- #1
wizkhal
- 6
- 0
For tiny h, f(x+h) = f(x) + hf'(x) ??
Hi all
I've been reading about proof of the chain rule and something is making me not sleep at night..
How is that possible that: "for tiny h, f(x+h) = f(x) + hf'(x)" ?
Even if 'h' is ultra-small, then "f(x+h)" will always differ from "f(x) + hf'(x)"... I know - the smaller the 'h', the smaller the difference but the difference will always exist for 'h' not equal to zero... So how can we plug this: "f(x) + hf'(x)" instead of "f(x+h)"..
Can someone explain this to me?
Hi all
I've been reading about proof of the chain rule and something is making me not sleep at night..
How is that possible that: "for tiny h, f(x+h) = f(x) + hf'(x)" ?
Even if 'h' is ultra-small, then "f(x+h)" will always differ from "f(x) + hf'(x)"... I know - the smaller the 'h', the smaller the difference but the difference will always exist for 'h' not equal to zero... So how can we plug this: "f(x) + hf'(x)" instead of "f(x+h)"..
Can someone explain this to me?