- #1
vcsharp2003
- 897
- 177
- Homework Statement
- Two charge ##q_1## and ##q_2## are separated by two different dielectrics as shown in the diagram, having dielectric constants of ##K_1## and ##K_2##. The two charges are separated by a distance ##a##. What would be the force on charge ##q_2## due to charge ##q_1##?
- Relevant Equations
- ##F = \dfrac {kq_1q_2} {Kr^2}##, where k is Coulomb's constant and K is dielectric constant, F is force of attraction between the two charges ##q_1## and ##q_2## that are separated by a distance ##r##
##E = \dfrac {kq} {Kr^2}##, where E is electric field due to a charge ##q## at a distance ##r## in medium having a dielectric constant ##K##
The force on charge ##q_2## will depend on the electric field in medium with dielectric ##K_2##.
Electric field in this second dielectric due to ##q_1## is ##E = \dfrac {kq_1} {K_2r^2}## where r would be the distance from ##q_1##.
So, the electric field at the point where charge ##q_2## is there would be ##E = \dfrac {kq_1} {K_2a^2}##
Therefore, force on second charge due to first charge would ##F_{21} = \dfrac {kq_1q_2} {K_2a^2} ##.
Electric field in this second dielectric due to ##q_1## is ##E = \dfrac {kq_1} {K_2r^2}## where r would be the distance from ##q_1##.
So, the electric field at the point where charge ##q_2## is there would be ##E = \dfrac {kq_1} {K_2a^2}##
Therefore, force on second charge due to first charge would ##F_{21} = \dfrac {kq_1q_2} {K_2a^2} ##.
Last edited: