- #1
Obliv
- 52
- 1
Homework Statement
Two blocks m (16kg) and M (88kg) are as shown in the figure. If the co-efficient of friction b/w the blocks is 0.38 but the surface beneath the block is frictionless, what is the minimum force required to hold m against M?
Homework Equations
Fnet = ma
Fs = μs*Fa
The Attempt at a Solution
By using this equation for m Fnety = mg - Fs = 0
One can find the force required Freq = (16*9.8) / μs to be 412.63N
From there I have read that because that is the force required on m on M, it is not the required applied force on the system. That comes out to be around ~487N using proportions. How is this part solved formally? Please be as formal as possible because I want to get this concept down fundamentally.
Thank you very much.
(side question regarding the concept of force transferring through a system of mass like this one: Say there was a basketball in space weighing 5kg. If you applied a force of 10N on it alone, it would accelerate at 2m/s2. If the basketball was connected, by a nearly massless rigid rod that extended millions of miles, to a rock weighing 5000kg, and you pushed on the basketball with 10N, would its acceleration ever change or would it be 10N/5005kg from beginning to end?)