- #1
Silviu
- 624
- 11
Hello! I have this Lagrangian: $$L=\frac{1}{2}m\dot{r}^2(1+f'(r)^2)+\frac{1}{2}m\dot{\phi}^2r^2-mgf(r)+\lambda(\phi-\omega t)$$ This represents the motion of a point-like object of mass m along a curved wire with shape $$z=f(r)$$ The wire rotates with constant angular velocity around the z axis $$\omega=\dot{\phi}$$ and I need to find the component of constraint force on the bead in the ##e_{\phi}## direction. Hence why I have that last term in the Lagrangian. Solving the Euler-Lagrange equation for ##\phi##, gives me (using the fact that ##\ddot{\phi}=0##) $$\lambda = 2mr\dot{r}\omega$$ Up to here my answer is like the one in the book. Now, from what I understand, to get the constraint force, you apply this formula: $$F=\lambda \frac{\partial f}{\partial q}$$ where in my case $$f=\phi-\omega t$$ and $$q=\phi$$ If I do this I get $$F_{\phi}=2mr\dot{r}\omega$$ which is wrong as it doesn't have units of force. In their solution they do $$F_{\phi}=\frac{1}{r}\frac{\partial L}{\partial \phi}=2m\dot{r}\omega$$ which seems correct. So what is wrong with what am I doing? Is the formula I am using wrong, or am I applying it the wrong way? Thank you!