- #1
fisico30
- 374
- 0
It is said that if a force depends only on distance (And not on time), the equations that involve those forces are invariant to a change of the frame of reference...is this true?
Coulomb's force law is only dependent on distance. At a certain space location the force has a value that does not change with time. But after the object is subjected to that force, it moves to a new spatial position and the force on it changes. So there is a change with time...
A time changing source generates a time changing field and therefore a time changing force on an object... what is special about these type of forces? Why don't they fit in the frame of reference transformations? after all, in classical mechanics time is absolute and distance differences are invariant...
thanks,
fisico30
Coulomb's force law is only dependent on distance. At a certain space location the force has a value that does not change with time. But after the object is subjected to that force, it moves to a new spatial position and the force on it changes. So there is a change with time...
A time changing source generates a time changing field and therefore a time changing force on an object... what is special about these type of forces? Why don't they fit in the frame of reference transformations? after all, in classical mechanics time is absolute and distance differences are invariant...
thanks,
fisico30