- #1
vparam
- 17
- 3
- Homework Statement
- If the coefficient of static friction between tires and pavement is 0.65, calculate the minimum torque that must be applied to the 66 cm diameter tire of a 950 kg automobile in order to "lay rubber" (make the wheels spin, slipping as the car accelerates). Assume each wheel supports an equal share of the weight.
- Relevant Equations
- ∑T = Iα
Suppose the car is moving to the right, so if the wheels roll without slipping, they are rolling clockwise. To get the wheel to slip, a counterclockwise torque would need to be applied to cause the wheel to have some angular acceleration. If the wheel was slipping, then the bottom of the wheel would move left with respect to the pavement, which means that friction would point to the right, providing a counterclockwise torque to offset the applied torque.
When the friction force maxes out, in other words F_f = μF_n, then an applied torque can exceed the frictional torque and cause net angular acceleration and the wheel to slip. In that sense, we set the two torques to be equal, and solve, which gets the correct answer according to the textbook.
However, I'm confused about why this works. If this is happening as the car accelerates as the problem suggests, wouldn't there need to be a net rightward force? Then, the translational velocity also increases, and can "keep up" with the increasing angular speed. Wouldn't this mean that the conditions laid out wouldn't work? In other words, how could this counterclockwise torque cause the car to accelerate to the right (more accurately, the force that causes the torque), while also getting the wheels to slip?
When the friction force maxes out, in other words F_f = μF_n, then an applied torque can exceed the frictional torque and cause net angular acceleration and the wheel to slip. In that sense, we set the two torques to be equal, and solve, which gets the correct answer according to the textbook.
However, I'm confused about why this works. If this is happening as the car accelerates as the problem suggests, wouldn't there need to be a net rightward force? Then, the translational velocity also increases, and can "keep up" with the increasing angular speed. Wouldn't this mean that the conditions laid out wouldn't work? In other words, how could this counterclockwise torque cause the car to accelerate to the right (more accurately, the force that causes the torque), while also getting the wheels to slip?
Last edited by a moderator: