- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello!
I want to use Fubini's theorem for $L^1(\mathbb{R}^n \times \mathbb{R}^m)$ functions in order to find the integral $\int_0^{+\infty} \frac{\sin x}{x} \left( \frac{1-e^{-x}}{x}-e^{-x} \right) dx$.
There is a hint that we should find $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy$.$\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy= \int_0^{1} \int_0^{+\infty} y \sin x e^{-xy} dx dy=\int_0^{+\infty} \int_0^{1} y \sin x e^{-xy} dy dx$
$\int_0^1 y e^{-xy} dy=-\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2}$
So, $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy=\int_0^{\infty} \sin x \left( -\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2} \right) dx$.
So now we got the wanted integral. How do we continue?
I want to use Fubini's theorem for $L^1(\mathbb{R}^n \times \mathbb{R}^m)$ functions in order to find the integral $\int_0^{+\infty} \frac{\sin x}{x} \left( \frac{1-e^{-x}}{x}-e^{-x} \right) dx$.
There is a hint that we should find $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy$.$\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy= \int_0^{1} \int_0^{+\infty} y \sin x e^{-xy} dx dy=\int_0^{+\infty} \int_0^{1} y \sin x e^{-xy} dy dx$
$\int_0^1 y e^{-xy} dy=-\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2}$
So, $\int_{(0,+\infty) \times (0,1)} y \sin x e^{-xy} dx dy=\int_0^{\infty} \sin x \left( -\frac{e^{-x}}{x}-\frac{e^{-x}}{x^2}+\frac{1}{x^2} \right) dx$.
So now we got the wanted integral. How do we continue?