- #1
Ennio
- 26
- 2
Hi guys, I need your support to formulate the kinetic energy of an object:
- having mass m [Kg]
- rotating with angular velocity o [rad/sec] referred to an axis t [m] distant (and parallel) to the symmetry axis of the object
- moving along the direction of its symmetry axis with a costant velocity w [m/sec]
We can say that the motion describes an Helix.
Now, is it possible to write the kinetic energy making a sum of the rotating energy plus the translating energy, as Ek = 1/2*I*o^2 + 1/2*m*w^2 ? With I the inertia of the object calculated through the Huygens-Steiner Theorem for a parallel axis.
Please consider any object you like (sphere, cylinder..). It´s clear that the peripheral velocity v=o*t [m/sec] and w [m/sec] are ortogonal to each other, so what is the consequent formulation for the kinetic energy?
Thanks in advance!
Ennio
- having mass m [Kg]
- rotating with angular velocity o [rad/sec] referred to an axis t [m] distant (and parallel) to the symmetry axis of the object
- moving along the direction of its symmetry axis with a costant velocity w [m/sec]
We can say that the motion describes an Helix.
Now, is it possible to write the kinetic energy making a sum of the rotating energy plus the translating energy, as Ek = 1/2*I*o^2 + 1/2*m*w^2 ? With I the inertia of the object calculated through the Huygens-Steiner Theorem for a parallel axis.
Please consider any object you like (sphere, cylinder..). It´s clear that the peripheral velocity v=o*t [m/sec] and w [m/sec] are ortogonal to each other, so what is the consequent formulation for the kinetic energy?
Thanks in advance!
Ennio
Last edited by a moderator: