- #36
Frostman
- 115
- 17
italicus said:Hi Frostman
have a look at this, mainly chapter 6 from page 89 on:
http://www.dfm.uninsubria.it/fh/FHpages/Teaching_files/appSR2.pdf
Furthermore, I’ like to carry your attention to the fact that the velocity ##\vec v ## has three components , so what is ##\gamma## ? To which component does it refer ? No, you can’t do that way, the motion of the charged particle isn’t in the ##x## axis direction only.
Just use the law that you have written for ## \frac { dp^{\mu}}{d\tau}## using the Faraday tensor, the last one that takes into account that ##\vec E ## is parallel to ##y## axis and ## \vec B## is parallel to the ##z## axis , and they have the same magnitude.
##\gamma## in this case is ##\frac{1}{\sqrt{1-(v_x(0)^2+v_y(0)^2+v_z(0)^2)}}##