- #36
Austin0
- 1,160
- 1
=DrGreg;2312738]Yes, the concept of parallel lines works just as well in Minkowski spacetime as in does in Euclidean space. And switching from one inertial frame to another doesn't affect parallelism.
then the similarity is true even in the Euclidean geometry of the paper you draw it on, but (I think) it's also true in some sense in Minkowski geometry too.
Thanks for taking the time to do the drawing. I did a rough sketch of the similarity i was referring to.
In it one triangle is [A,O ,C] the x' of S' and the (t ,x )axi of S
The other is [B,O,C ] the t' of S' and (t , x )axi of S
The ratio of the length of B,C to O,B is equivalent to the ratio of A,C to O,C
This equivalence is geometrically direct but quantitatively requires the transformation.
One is a time measure and one a distance measure.
A vertical flip of [A,O,C] and extending the hypotenuse makes another valid line of simultaneity or synchronicity.
WHy is it that this is never mentioned or incorporated into the system??
Or is it that I have just never encountered it?
In Minkowski space is there a difference between applying the trig functions directly and then transforming the results and using functions that incorporate the transform?
Alright.How about "gravitational time dilation"? In relativity we don't distinguish between the "true" gravity due to matter and the "pseudo-gravity" of acceleration, it's all just "gravity".
BTW I appreciated your, as you put it "pedantic" correction of the misuse of the term parabola in that other thread about Minkowski diagrams. I had been very confused and had actually searched the web for references because I didnt know what they were talking about
.In the context of relativity, "flat" and "Euclidean" aren't the same thing at all Minkowski geometry isn't Euclidean geometry, but it's still "flat". That's because (sticking to our simplified 2D spacetime) we can draw spacetime diagrams on a flat piece of paper. This is a bit of an oversimplification, but if spacetime is curved, you have to draw the diagram on a curved surface, such as the surface of a sphere. If you use curved gridlines on a flat surface, it's still flat spacetime, and the geometry hasn't changed, just the coordinate system
This is a bit of a semantically elusive subject here. In the context of spacetime as being the real world space then isn't SR spacetime both flat and Euclidean? Inertial straight lines etc.?
Obviously 2D drawings are flat but isn't the spacetime represented by the drawings also flat as just described ??
Don't those curved gridlines then represent a real world spacetime that is no longer either flat nor EUclidean? SO the drawing may be "flat" but the spacetime isn't??
R[/IAll valid coordinate systems must make identical predictions about anything that you can measure that isn't just a feature of the coordinates themselves. For example whether or not two particles collide, or how much time will elapse on a single clock transported between two events. The equations that describe the laws of physics may change when you switch between different coordinate systems (but not between two Minkowski coordinate systems in the absence of gravity). And some coordinate systems may not extend to the whole of spacetime, they may only be valid within a restricted region.
Say we take measurements of the paths of two particles over a short distance in an Earth lab. They are parallel as measured. We plot those paths in a cartesian 4D frame and a GR frame. Am I correct in thinking that within a sufficiently small subsector of space that GR space is basically Euclidean and that the coordinate paths would be virtually identical?
But the extrapolation [not further measurement] within the two systems would be very different. That to have correspondence would require the introduction of gravity into the cartesian system. This is implicit in the GR coordinate system , just as the gamma factor is implicit in the Lorentzian system.
But in the Cartesian space it is a necessary added assumption. SO that is part of my enquiry; Is curved space intrinsic in Minkowski space , derivable directly from the postulates and math of SR or is it an imported assumption.
This is all tied in with several other questions as well as the basic desire to really understand the geometry of the system. That is why I am trying to fit in hyperbolas and see how they relate and if they also suggest curvature in some way when in the context of two purely inertial frames , with no acceleration involved. SO far I have encountered the hyperbolas of invarience and some ways they relate to the relative values within the space
but not yet how they directly apply in the direct geometrically spatial way that ellipsoids do.
I just realized I am rambling on here.
Thanks for your help , I hope I don't overextend your legendary patience