- #1
heardie
- 24
- 0
Myself and a user on another board have come to the following hurdle we can't overcome:
Mathematically we represent an arbiarty matter wave as a superposition of plane waves; using the theory of Fourier analysis. We can write an arbitary wavepacked as a Fourier integral of the form:
[tex]$\psi (x,t) = \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^\infty {A(p_x )e^{\frac{i}{\hbar }(p_x x - Et)} dP_x } $
[/tex]
What this means is we can mathematically constuct a localised complace wavefunction by adding up (integrating) a large number of plane waves each with different momentum. The relaive amplitde of the component waves is determined by the function A(p[x]) which is given by:
[tex]$A(p_x ) = \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^\infty {\psi (x,t)e^{\frac{i}{\hbar }(p_x x - Et)} dx} $
[/tex]
The functions psi(x,t) and A(p[x])) are called Fourier transofrms of one another.
How could we use this practically? Isn't there a circular argument there? To get teh amplitudes, we need the wavefunction, but to get teh wavefunction we need the amplitudes. The only answer I could give was that the amplitudes may fall naturally out of the system being studied. However having not 'offically' studied Fourier series before, is there a simpiler explanation?
Mathematically we represent an arbiarty matter wave as a superposition of plane waves; using the theory of Fourier analysis. We can write an arbitary wavepacked as a Fourier integral of the form:
[tex]$\psi (x,t) = \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^\infty {A(p_x )e^{\frac{i}{\hbar }(p_x x - Et)} dP_x } $
[/tex]
What this means is we can mathematically constuct a localised complace wavefunction by adding up (integrating) a large number of plane waves each with different momentum. The relaive amplitde of the component waves is determined by the function A(p[x]) which is given by:
[tex]$A(p_x ) = \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^\infty {\psi (x,t)e^{\frac{i}{\hbar }(p_x x - Et)} dx} $
[/tex]
The functions psi(x,t) and A(p[x])) are called Fourier transofrms of one another.
How could we use this practically? Isn't there a circular argument there? To get teh amplitudes, we need the wavefunction, but to get teh wavefunction we need the amplitudes. The only answer I could give was that the amplitudes may fall naturally out of the system being studied. However having not 'offically' studied Fourier series before, is there a simpiler explanation?