- #1
dimensionless
- 462
- 1
A function [tex]f(t)[/tex] can be represented by the expansion
[tex]
f(t) = \frac{1}{2}A_{0} + A_{1}cos(\omega t) + A_{2}cos(2 \omega t) + A_{3}cos(3 \omega t) + ...
B_{1}sin(\omega t) + B_{2}sin(2 \omega t) + B_{3}sin(3 \omega t) + ...
[/tex]
Do the constants [tex]A_{n}[/tex] and [tex]B_{n}[/tex] the same thing as the real and imaginary components of the Fourier transform? If so, why is there no imaginary component in the zeroth term?
[tex]
f(t) = \frac{1}{2}A_{0} + A_{1}cos(\omega t) + A_{2}cos(2 \omega t) + A_{3}cos(3 \omega t) + ...
B_{1}sin(\omega t) + B_{2}sin(2 \omega t) + B_{3}sin(3 \omega t) + ...
[/tex]
Do the constants [tex]A_{n}[/tex] and [tex]B_{n}[/tex] the same thing as the real and imaginary components of the Fourier transform? If so, why is there no imaginary component in the zeroth term?