- #1
Dustinsfl
- 2,281
- 5
$f(\theta) = \theta$ for $-\pi < \theta \leq \pi$
$f$ is odd so $\sum\limits_{n = 1}^{\infty}a_n\sin n\theta$.
$$
\frac{1}{\pi}\int_{-\pi}^{\pi}\theta\sin n\theta d\theta
$$
So I have that
$$
a_n = \begin{cases}
\frac{-2\pi}{n}, & \text{if n is even}\\
\frac{2\pi}{n}, & \text{if n is odd}
\end{cases}
$$
So the solution would be
$$
2\pi\sum_{n =1}^{\infty}\frac{1}{2n-1}\sin(2n-1)\theta - \frac{1}{2n}\sin 2n\theta\mbox{?}
$$
$f$ is odd so $\sum\limits_{n = 1}^{\infty}a_n\sin n\theta$.
$$
\frac{1}{\pi}\int_{-\pi}^{\pi}\theta\sin n\theta d\theta
$$
So I have that
$$
a_n = \begin{cases}
\frac{-2\pi}{n}, & \text{if n is even}\\
\frac{2\pi}{n}, & \text{if n is odd}
\end{cases}
$$
So the solution would be
$$
2\pi\sum_{n =1}^{\infty}\frac{1}{2n-1}\sin(2n-1)\theta - \frac{1}{2n}\sin 2n\theta\mbox{?}
$$
Last edited: