- #1
roam
- 1,271
- 12
Homework Statement
I want to find the Fourier series of the sawtooth function in terms of real sine and cosine functions by using the formula:
$$f_p (t)=\sum^\infty_{k=-\infty} c_k \exp \left(j2\pi \frac{k}{T}t \right) \tag{1}$$
This gives the Fourier series of a periodic function, with the coefficients:
$$c_k = \frac{1}{T} F \left( \frac{k}{T} \right) \tag{2}$$
where the capital letter denotes the Fourier transform.
Homework Equations
Equation (1) and (2) above are found by considering the IFT which recovers ##f_p## from ##F_p##:
$$\intop^\infty_{-\infty} F_p (\nu) e^{j2\pi \nu t} \ d\nu = \intop^\infty_{-\infty} \frac{1}{T} \sum^\infty_{-\infty} F \left( \frac{k}{T} \right) \delta(\nu - \frac{k}{T}) e^{j2\pi \nu t} \ d\nu=\sum^\infty_{-\infty} \frac{1}{T} F \left( \frac{k}{T} \right) e^{j2\pi \frac{k}{T} t}$$
The Attempt at a Solution
[/B]
By using a low pass rectangular filter, a single period of the sawtooth function is given by
$$f(t)=t\Pi\left(\frac{t}{T}\right)$$
Since we have the following Fourier transform pair:
$$t \leftrightarrow \frac{j \delta'(\nu)}{2 \pi}$$
We can write the FT of a single period of the sawtooth wave as:
$$F(\nu)=\frac{j\delta'\left(\nu\right)}{2\pi}*T\ sinc\left(\nu T\right)=\frac{jT}{2\pi}\ sinc^{\prime}(\nu T)=\left(\frac{jT}{2\pi}\right)\left(\frac{\cos(\pi\nu T)}{\nu T}-\frac{\sin(\pi\nu T)}{\pi\nu^{2}T^{2}}\right)$$
Using equation (2), we get the coefficients:
$$c_{k}=\frac{1}{T}\left(\frac{jT}{2\pi}\right)\left(\frac{\cos(\pi\frac{k}{T}T)}{\frac{k}{T}T}-\frac{\sin(\pi\frac{k}{T}T)}{\pi\left(\frac{k}{T}\right)^{AC2}T^{2}}\right)=\frac{j}{2\pi}\left(\frac{\cos(\pi k)}{k}-\frac{\sin(\pi k)}{\pi k^{2}}\right).$$
And therefore, the Fourier series becomes:
$$f_{p}(t)=c_{k}\ e^{j2\pi\frac{k}{T}t}=\frac{j}{2\pi}\left(\frac{\cos(\pi k)}{k}-\frac{\sin(\pi k)}{\pi k^{2}}\right)e^{j2\pi\frac{k}{T}t}$$
But this does not look correct (it is very different than the Fourier series of the sawtooth given here). Since the sawtooth function is odd, I think we must only have the sine terms present. What is wrong here?
Also, because I need to plot this function, how can I get rid of the ##j## terms?
Any help would be appreciated.