Fourier series of translated function

  • Thread starter Thread starter psie
  • Start date Start date
  • Tags Tags
    Fourier analysis
psie
Messages
315
Reaction score
40
Homework Statement
Find the Fourier series of ##h(t)=e^{3it}f(t-4)##, when ##f## has period ##2\pi## and satisfies ##f(t)=1## for ##|t|<2##, ##f(t)=0## for ##2<|t|<\pi##.
Relevant Equations
Previously I worked an exercise where I showed that if ##f## has Fourier coefficients ##(c_n)##, then the function ##t\mapsto e^{iat}f(t)## has Fourier coefficients ##(c_{n-a})## for ##a\in\mathbb Z##. And similarly, the function ##t\mapsto f(t-b)## has Fourier coefficients ##(e^{-inb}c_n)## for ##b\in\mathbb R##.
So here is my attempt. The result doesn't look very nice, so maybe there's a cleaner solution:

From the relevant equations, the coefficients of ##h(t)## should be ##(e^{-i(n-3)4}c_{n-3})##, so I need to find ##(c_n)##. They are given by, assuming ##n\neq0##, \begin{align}\frac1{2\pi}\int_{-\pi}^\pi f(t)e^{-int}dt&=\frac1{2\pi}\int_{-2}^2 e^{-int}dt \nonumber \\ &=\frac1{2\pi}\left[-\frac{e^{-int}}{in}\right]_{-2}^2 \nonumber \\ &=\frac1{2\pi}\left(\frac{e^{i2n}}{in}-\frac{e^{-i2n}}{in}\right) \nonumber \\ &=\frac{\sin(2n)}{\pi n}.\nonumber\end{align} For ##n=0##, we get simply ##\frac2{\pi}##.

Recall the coefficient of ##h(t)## should be ##(e^{-i(n-3)4}c_{n-3})##, so they are $$e^{-i(n-3)4}\frac{\sin (2(n-3))}{\pi(n-3)}\text{ for }n\neq 3,\quad \frac{2}{\pi} \text{ for }n=3 .$$ Therefor the (complex) Fourier series of ##h(t)## must be $$h(t)\sim\frac{2}{\pi}e^{i3t}+\sum_{\substack{k\in\mathbb Z \\ k\neq 3}}e^{-i(n-3)4}\frac{\sin (2(n-3))}{\pi(n-3)}e^{int}.$$

Unfortunately my book does not provide any answer to this exercise, so hence the post. Is this going in the right direction?
 
Physics news on Phys.org
You can check your result by performing inverse Fourier transform and seeing if it comes back.
 
Back
Top