- #1
roam
- 1,271
- 12
Homework Statement
Using Parseval's theorem,
$$\int^\infty_{-\infty} h(\tau) r(\tau) d\tau = \int^\infty_{-\infty} H(s)R(-s) ds$$
and the properties of the Fourier transform, show that the Fourier transform of ##f(t)g(t)## is
$$\int^\infty_{-\infty} F(s)G(\nu-s)ds$$
Homework Equations
Fourier transform for ##f(t)g(t)## is defined as:
$$\int^\infty_{-\infty} f(t)g(t) e^{-2 \pi \nu t} dt$$
The Attempt at a Solution
So starting from the definition of Fourier transform:
$$\int^\infty_{-\infty} f(t)g(t) e^{-2 \pi \nu t} dt$$
So, do we need to ignore the exponential term here? If we ignore it, we can apply Parseval's theorem to get the frequency domain:
$$\int^\infty_{-\infty} f(t)g(t) dt = \int^\infty_{-\infty} F(s) G(- s) d s$$
Now, what property of the Fourier transform can I use to get ##G(-s) \implies G(\nu-s)##?
I don't understand what the ##(\nu-s)## part means, does it indicates some sort of shifting or delay in the input?
Any help is greatly appreciated.