- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to calculate the Fourier transform of $g(x)=|x|$.
I got so far that $\hat{g}(\omega)=2 \left[ \frac{x \sin{(x \omega)}}{\omega}\right]_{x=0}^{+\infty}-2 \int_0^{+\infty} \frac{\sin{(x \omega)}}{\omega} dx$
Is it right so far?
How can we calculate $\lim_{x \to +\infty} \frac{x \sin{(\omega x)}}{\omega}$ ?
I want to calculate the Fourier transform of $g(x)=|x|$.
I got so far that $\hat{g}(\omega)=2 \left[ \frac{x \sin{(x \omega)}}{\omega}\right]_{x=0}^{+\infty}-2 \int_0^{+\infty} \frac{\sin{(x \omega)}}{\omega} dx$
Is it right so far?
How can we calculate $\lim_{x \to +\infty} \frac{x \sin{(\omega x)}}{\omega}$ ?