- #1
Fosheimdet
- 15
- 2
In my QFT homework I was asked to prove that $$\int d^3x \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} k_j f(\mathbf{x}) = i \frac{df}{dx_j}(\mathbf{y}) $$
Using ##\frac{\partial e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}}{\partial x^j} = i k_j e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}##, the solution is as follows
$$\int d^3x \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} k_j f(\mathbf{x}) = -i \int d^3x \int \frac{d^3k}{(2\pi)^3} \frac{\partial e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}}{\partial x^j} f(\mathbf{x}) $$
$$ = -i \int d^3x \int \frac{d^3k}{(2\pi)^3} \left( \frac{\partial}{\partial x^j} (e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}f(\mathbf{x}) ) - \frac{\partial f(\mathbf x)}{\partial x^j} e^{i\mathbf k \cdot (\mathbf x - \mathbf y)}\right) $$
$$ = i \int d^3x \frac{\partial f(\mathbf x) }{\partial x^j} \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf k \cdot (\mathbf x - \mathbf y)} $$
$$= i \int d^3x \frac{\partial f(\mathbf x)}{\partial x^j} \delta^{(3)}(\mathbf x - \mathbf y) = i \frac{\partial f(\mathbf x)}{\partial x^j} \bigg|_{\mathbf x = \mathbf y}$$
I don't understand what happened to the first term on the RHS of the second equation. Why is ##-i\int d^3x \int \frac{d^3k}{(2\pi)^3} \frac{\partial}{\partial x^j} (e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}f(\mathbf{x}))=0?##
Using ##\frac{\partial e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}}{\partial x^j} = i k_j e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}##, the solution is as follows
$$\int d^3x \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} k_j f(\mathbf{x}) = -i \int d^3x \int \frac{d^3k}{(2\pi)^3} \frac{\partial e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}}{\partial x^j} f(\mathbf{x}) $$
$$ = -i \int d^3x \int \frac{d^3k}{(2\pi)^3} \left( \frac{\partial}{\partial x^j} (e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}f(\mathbf{x}) ) - \frac{\partial f(\mathbf x)}{\partial x^j} e^{i\mathbf k \cdot (\mathbf x - \mathbf y)}\right) $$
$$ = i \int d^3x \frac{\partial f(\mathbf x) }{\partial x^j} \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf k \cdot (\mathbf x - \mathbf y)} $$
$$= i \int d^3x \frac{\partial f(\mathbf x)}{\partial x^j} \delta^{(3)}(\mathbf x - \mathbf y) = i \frac{\partial f(\mathbf x)}{\partial x^j} \bigg|_{\mathbf x = \mathbf y}$$
I don't understand what happened to the first term on the RHS of the second equation. Why is ##-i\int d^3x \int \frac{d^3k}{(2\pi)^3} \frac{\partial}{\partial x^j} (e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}f(\mathbf{x}))=0?##
Last edited by a moderator: