- #1
ognik
- 643
- 2
Find the Fourier Transform of $ e^{-a|t|}Cosbt $
I'd like to simplify this using $Cosbt = Re\left\{e^{ibt}\right\}$
$\therefore \hat{f}(\omega) = Re\left\{ \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{\left(-a+ib+iw\right)|t|} \,dt \right\} = Re\left\{ \frac{1}{\sqrt{2\pi}} \frac{1}{-a+ib+iw} e^{-a|t|}.e^{i(b+\omega)|t|}|^\infty_{-\infty} \right\}$
I think I can argue that the $e^{-a|t|}$ term dominates the $e^{i}$ term which is bounded. BUT the lower limit will make
$e^{-a|t|}$ infinite... is there a better way of approaching this FT?
I'd like to simplify this using $Cosbt = Re\left\{e^{ibt}\right\}$
$\therefore \hat{f}(\omega) = Re\left\{ \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{\left(-a+ib+iw\right)|t|} \,dt \right\} = Re\left\{ \frac{1}{\sqrt{2\pi}} \frac{1}{-a+ib+iw} e^{-a|t|}.e^{i(b+\omega)|t|}|^\infty_{-\infty} \right\}$
I think I can argue that the $e^{-a|t|}$ term dominates the $e^{i}$ term which is bounded. BUT the lower limit will make
$e^{-a|t|}$ infinite... is there a better way of approaching this FT?