Fourier transform of t-V model for t=0 case

In summary, the Fourier transform of the t-V model for the t=0 case simplifies the analysis of the system by eliminating the hopping term, resulting in a purely interaction-driven scenario. This transformation highlights the effects of the local interactions on the electronic properties, leading to a focus on static charge configurations and potential ordering phenomena. The study reveals insights into the ground state and correlation functions, emphasizing the importance of interaction strength and spatial arrangement in determining system behavior.
  • #1
randomquestion
5
2
Homework Statement
I am trying to compute the Fourier transform of the 2D ##t-V## model for the case ##t=0##.
Relevant Equations
$$\hat H = -t \displaystyle \sum_{\langle i,j\rangle} ( \hat c_i^{\dagger} \hat c_j + \hat c_j^{\dagger} \hat c_i) + V \sum_{\langle i, j \rangle} \hat n_i \hat n_j$$
To compute the Fourier transform of the ##t-V## model for the case where ##t = 0##, we start by expressing the Hamiltonian in momentum space. Given that the hopping term ##t## vanishes, we only need to consider the potential term:

$$\hat{H} = V \sum_{\langle i, j \rangle} \hat{n}_i \hat{n}_j$$

Let's express this in terms of creation and annihilation operators in momentum space. The Fourier transform of the electron annihilation operator ##\hat{c}_i## is given by:

$$\hat{c}_i = \frac{1}{\sqrt{N}} \sum_k e^{-ikr_i} \hat{c}_k$$

where ##N## is the total number of lattice sites, ##k## is the wavevector, and ##r_i## is the position of lattice site ##i##.

Therefore, the electron number operator ##\hat{n}_i## can be expressed as:

$$\hat{n}_i = \hat{c}_i^\dagger \hat{c}_i = \frac{1}{N} \sum_{k,k'} e^{i(k'-k)r_i} \hat{c}_{k'}^\dagger \hat{c}_k$$

Hence, the Hamiltonian in momentum space becomes:

$$\hat{H} = \frac{V}{N^2} \sum_{\langle i, j \rangle} \sum_{k,k'} e^{i(k'-k)(r_j-r_i)} \hat{c}_{k'}^\dagger \hat{c}_k \hat{c}_{k}^\dagger \hat{c}_{k'}$$


I wonder if we can further simplify, is my attempt correct? Is it possible to compute the energy eigenvalues like in the case of ##V=0## where the solution corresponds ##e_k = -2t(cos(kx)+cos(ky))##.
 
Last edited:
  • Like
Likes berkeman

Similar threads

Replies
6
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
17
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Back
Top