- #1
redtree
- 329
- 13
Given the Fourier conjugates ##\vec{r}## and ##\vec{k}## where ##\vec{r} = [r_1,r_2,r_3]## and ##\vec{k} = [k_1,k_2,k_3]## , are ##r_1## /##k_1##, ##r_2##/##k_2##, ##r_3##/##k_3## also Fourier conjugates, such that:
##\begin{equation}
\begin{split}
f(\vec{r})&=[f_1(r_1),f_2(r_2),f_3(r_3)]
\\
F[f(\vec{r})]&=F[f_1(r_1),f_2(r_2),f_3(r_3)]
\\
F[f_1(r_1),f_2(r_2),f_3(r_3)]&=[\hat{f}_1(r_1),\hat{f}_2(r_2),\hat{f}_3(r_3)]
\\
[\hat{f}_1(r_1),\hat{f}_2(r_2),\hat{f}_3(r_3)]&=\hat{f}(\vec{k})
\end{split}
\end{equation}##
##\begin{equation}
\begin{split}
f(\vec{r})&=[f_1(r_1),f_2(r_2),f_3(r_3)]
\\
F[f(\vec{r})]&=F[f_1(r_1),f_2(r_2),f_3(r_3)]
\\
F[f_1(r_1),f_2(r_2),f_3(r_3)]&=[\hat{f}_1(r_1),\hat{f}_2(r_2),\hat{f}_3(r_3)]
\\
[\hat{f}_1(r_1),\hat{f}_2(r_2),\hat{f}_3(r_3)]&=\hat{f}(\vec{k})
\end{split}
\end{equation}##