- #1
unscientific
- 1,734
- 13
Homework Statement
Find possible momentum, and their probabilities. Find possible energies, and their probabilities.
Homework Equations
The Attempt at a Solution
First, we need to Fourier transform it into momentum space:
[tex]\psi_k = \frac{1}{\sqrt{2\pi}} \int \psi_x e^{-ikx} dx [/tex]
[tex] = \frac{1}{\sqrt{2\pi \hbar}} \int \psi_x exp(-i\frac{p}{\hbar}x) dx[/tex]
(Why is there an extra factor of ##\sqrt \hbar## at the denominator?)
[tex] = \frac{A}{\sqrt{2\pi \hbar}} \int \left[ cos (\frac{p}{\hbar}x) + cos(\frac{2p}{\hbar}x)\right] exp (-i\frac{p}{\hbar}x) dx [/tex]
Now the Fourier transform of ##cos (qx)## is ##\pi(\delta_{(k-q)} + \delta_{(k+q)})##:
[tex]\frac{A\pi}{\sqrt{2\pi \hbar}}\left[ \delta_0 + \delta_{(2\frac{p}{\hbar})} + \delta_{(\frac{p}{\hbar})} + \delta_{(3\frac{p}{\hbar})}\right] [/tex]
[tex] \psi_{(p)} = A \sqrt{\frac{\pi}{2\hbar}}[/tex]
It's strange that I got a constant..
I tried a different approach to see if it will work:
The wavefunction is a combination of state 'k' and '2k':
Probabilities of getting each state is simply ##A^2##.
The two possible momenta are ##\hbar k## and ##2\hbar k##.
Likewise for energy, probabilities are simply ##A^2##.
The two possible energies are ##\frac{\hbar k^2}{2m}## and ##\frac{\hbar (2k)^2}{m}##.