- #1
jerry109
- 2
- 0
Homework Statement
Determine the Fourier transform on the tempered distribution:
[tex]
\langle f, \varphi \rangle
[/tex]
Where [tex] f[/tex] can be given by they taylor series representation:
[tex]
f = i\sum_{n=0}^{\infty} \frac {x^{3n+2}}{(2n)!}
[/tex]
The Attempt at a Solution
Fourier transform on tempered distribution is:
[tex]
F\langle f, \varphi \rangle = \langle F f, \varphi \rangle = \langle f, F \varphi \rangle
= i\int \sum_{n=0}^{\infty} \frac {x^{3n+2}}{(2n)!} \hat{\varphi} dx
= i\sum_{n=0}^{\infty}\int \frac {x^{3n+2}}{(2n)!} \hat{\varphi} dx
[/tex]
I'm stuck as how to resolve the infinite sum involving the Fourier transform of the test function [tex]\varphi[/tex].
Perhaps:
[tex]
i\sum_{n=0}^{\infty}\int \frac {x^{3n+2}}{(2n)!} \hat{\varphi} dx = i\sum_{n=0}^{\infty}\int \frac {x^{3n+2}}{(2n)!} \hat{\delta}(x-x_0) dx
= i\sum_{n=0}^{\infty}\int \frac {x^{3n+2}}{(2n)!} e^{2{\pi}ikx_0}dx= ie^{2{\pi}ik{x_0}}\sum_{n=0}^{\infty}\int \frac {x^{3n+2}}{(2n)!} dx
= ie^{2{\pi}ik{x_0}}\sum_{n=0}^{\infty}\frac {x^{3n+3}}{(2n)! * (3n+3)!}
[/tex]Any help would be fantastically appreciated,
Jerry109
Last edited: