- #1
Abide
- 16
- 0
Homework Statement
I'm trying to Solve for an impulse response h(t) Given the excitation signal x(t) and the output signal y(t)
x(t) = 4rect(t/2)
y(t) = 10[(1-e-(t+1))u(t+1) - (1-e-(t-1))u(t-1)]
h(t) = ?
y(t) = h(t)*x(t) --> '*' meaning convolution!
I am unsure how to take the Fourier Transform of the elements in the output signal. I have posted my attempts below and I would like to know if I am going this correctly or not, Thanks!
Homework Equations
Using the multiplication - convolution duality I know that we need to take the Fourier transform of each element giving us the following...
Y(f) = H(f)X(f)
Which then allows us to solve for H(f) by Y(f)/X(f)
The Attempt at a Solution
First I distributed the unit step functions in y(t) giving...
y(t) = 10[u(t+1)-e-(t+1)u(t+1) - u(t-1) + e-(t-1)u(t-1)
Now I take the Fourier transform of each element in y(t)
F(u(t+1)) = 1/(jω+(02))(ej2∏f)
F(e-(t+1)u(t+1)) = 1/(jω+(12))(e-j2∏f)
I got this by using the following definition of the Fourier Transform
e-Atu(t) <---> 1/(jω+A2) for A > 0I was curious as to if anyone could give me some insight on whether I am performing these operations correctly or not. I apologize if I left out any information!
Last edited: