- #1
bugatti79
- 794
- 1
Hi Folks,
I need to evaluate the following function [tex]f(t)=A[1+B \cos(\omega_1 t+ \phi)] \cos(\omega_2 t+ \phi)[/tex] to find [tex]f(\omega)[/tex] using the Fourier transform.
Ie, the Fourier transform I use is
[tex]f(\omega)=\displaystyle \frac{1}{\sqrt {2 \pi}} \int^{\infty}_{-\infty} f(t) (\cos \omega t+ j \sin \omega t)dt[/tex]
giving
[tex]f(\omega)=\displaystyle \frac{1}{\sqrt {2 \pi}} \int^{\infty}_{-\infty} A[1+B \cos(\omega_1 t+ \phi)] \cos(\omega_2 t+ \phi) (\cos \omega t+ j \sin \omega t)dt[/tex]
We are integrating wrt t but we have 3 different frequencies. Not sure how to handle this...
Basically i want to plot the frequency response as a function of [tex]\omega_1[/tex] and [tex]\omega_2[/tex]...any ideas?
I need to evaluate the following function [tex]f(t)=A[1+B \cos(\omega_1 t+ \phi)] \cos(\omega_2 t+ \phi)[/tex] to find [tex]f(\omega)[/tex] using the Fourier transform.
Ie, the Fourier transform I use is
[tex]f(\omega)=\displaystyle \frac{1}{\sqrt {2 \pi}} \int^{\infty}_{-\infty} f(t) (\cos \omega t+ j \sin \omega t)dt[/tex]
giving
[tex]f(\omega)=\displaystyle \frac{1}{\sqrt {2 \pi}} \int^{\infty}_{-\infty} A[1+B \cos(\omega_1 t+ \phi)] \cos(\omega_2 t+ \phi) (\cos \omega t+ j \sin \omega t)dt[/tex]
We are integrating wrt t but we have 3 different frequencies. Not sure how to handle this...
Basically i want to plot the frequency response as a function of [tex]\omega_1[/tex] and [tex]\omega_2[/tex]...any ideas?
Last edited: