- #1
I_laff
- 41
- 2
I understand that the solutions to the time-independent Schrodinger equation are complete, so a linear combination of the wavefunctions can describe any function (i.e. ##f(x) = \sum_{n = 1}^{\infty}c_n\psi_n(x) = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} c_n\sin\left(\frac{n\pi}{a}x\right)## for the infinite well case).
I don't understand how using Fourier's trick allows you to calculate ##c_n##. Also, I don't understand how ##\sum_{n=1}^{\infty}c_n\delta_{mn} = c_m##. I get that the Kronecker delta comes out of the fact that ##\psi_m^\ast(x)## and ##\psi_n(x)## are orthogonal. I understand that when ##m = n##, then the Kronecker delta equals 1, but how does this allow us to find ##c_m## and ##c_n## .
$$ \int_{0}^{a} \psi_m^\ast(x) f(x)\mathrm dx = \sum_{n=1}^{\infty}c_n \int_{0}^{a} \psi_m^\ast (x)\psi_n(x)\mathrm dx = \sum_{n=1}^{\infty}c_n\delta_{mn} = c_m $$
I don't understand how using Fourier's trick allows you to calculate ##c_n##. Also, I don't understand how ##\sum_{n=1}^{\infty}c_n\delta_{mn} = c_m##. I get that the Kronecker delta comes out of the fact that ##\psi_m^\ast(x)## and ##\psi_n(x)## are orthogonal. I understand that when ##m = n##, then the Kronecker delta equals 1, but how does this allow us to find ##c_m## and ##c_n## .
$$ \int_{0}^{a} \psi_m^\ast(x) f(x)\mathrm dx = \sum_{n=1}^{\infty}c_n \int_{0}^{a} \psi_m^\ast (x)\psi_n(x)\mathrm dx = \sum_{n=1}^{\infty}c_n\delta_{mn} = c_m $$