- #1
whoareyou
- 162
- 2
A swimmer who achieves a speed of 0.75 m/s in still water swims directly across a river 72 m wide. The swimmer lands on the far shore at a position 54 m downstream from the starting point.
(a) Determine the speed of the river current.
(b) Determine the swimmer?s velocity relative to the shore.
(c) Determine the direction the swimmer would have to aim to land directly across from the starting position.
I am having trouble understanding the actual physics of this question. I mean I get the math: a) 72/0.75 = 96s --> 54/96 = 0.56m/s but I don't understand why. If the swimmer is swimming with the current, should it the speed be faster? And are my calculations even right because it says he swims across the river, but is then 54m downstream. So there are two different directions ...
Can anybody explain the physics of this question to me please?
(a) Determine the speed of the river current.
(b) Determine the swimmer?s velocity relative to the shore.
(c) Determine the direction the swimmer would have to aim to land directly across from the starting position.
I am having trouble understanding the actual physics of this question. I mean I get the math: a) 72/0.75 = 96s --> 54/96 = 0.56m/s but I don't understand why. If the swimmer is swimming with the current, should it the speed be faster? And are my calculations even right because it says he swims across the river, but is then 54m downstream. So there are two different directions ...
Can anybody explain the physics of this question to me please?