Frank's questions at Yahoo Answers regarding de Moivre's theorem

  • MHB
  • Thread starter MarkFL
  • Start date
  • Tags
    Theorem
In summary, the conversation discussed the use of mathematical induction to prove a trigonometric identity for complex numbers, as well as using the binomial theorem to find the expansion of a complex number raised to a power. The conversation also showed how this can be applied to find a trigonometric identity for the cosine function.
  • #1
MarkFL
Gold Member
MHB
13,288
12
Here are the questions:

Induction and Complex #'s. Calc help?


a) Prove, using mathematical induction, that for a positive integer n, (cos(x) + isinx)^n = cosnx +i sinnx where I^2 + -1

b)The complex number z is defined by z = cosx + isinx
I) show that 1/z = cos (-x) + isin(-x)
II) Deduce that z^n + z^-n = 2cosnx

c) Find the binomial expansion of (z + z^-1)^5
I) Hence show tat cos^5x = 1/16(acoas5x + bcos3x + ccosx) where a,b,c are positive integers to be found.

Thank you so much for you help!

I have posted a link there to this topic, so the OP can see my work.
 
Mathematics news on Phys.org
  • #2
Hello Frank,

a) First, we check to see if $P_1$ (the case where $n=1$) is valid.

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^1= \cos(1 \cdot \theta)+i \cdot \sin(1 \cdot \theta)\)

\(\displaystyle \cos( \theta)+i \cdot \sin( \theta)= \cos( \theta)+i \cdot \sin( \theta)\)

$P_1$ is true. Next, our induction hypothesis $P_n$ is:

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^n= \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta)\)

Multiply both sides by \(\displaystyle \cos( \theta)+i \cdot \sin( \theta)\):

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^n \left( \cos( \theta)+i \cdot \sin( \theta) \right)= \left( \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta) \right) \left( \cos( \theta)+i \cdot \sin( \theta) \right)\)

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos(n \cdot \theta) \cos( \theta)+i \cdot \cos(n \cdot \theta) \sin( \theta)+i \cdot \cos( \theta) \sin(n \cdot \theta)+i^2 \cdot \sin( \theta) \sin(n \cdot \theta)\)

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \left( \cos(n \cdot \theta) \cos( \theta)- \sin(n \cdot \theta) \sin( \theta) \right)+i \left( \sin( \theta) \cos(n \cdot \theta)+ \cos( \theta) \sin(n \cdot \theta) \right)\)

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left(n \cdot \theta+ \theta \right)+i \cdot \sin \left(n \cdot \theta+ \theta \right)\)

\(\displaystyle \left( \cos(\theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left((n+1) \cdot \theta \right)+i \cdot \sin \left((n+1) \cdot \theta \right)\)

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

b) For this question and for part c), we will find proving the following useful:

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)\) where $n\le0\in\mathbb{Z}$

First, we check to see if $P_0$ (the case where $n=0$) is valid.

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^0= \cos(0 \cdot \theta)+i \cdot \sin(0 \cdot \theta)\)

\(\displaystyle 1= \cos(0)+i \cdot \sin(0)=1\)

$P_0$ is true. Next, our induction hypothesis $P_n$ is:

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)\)

Multiply both sides by \(\displaystyle \left(\cos( \theta)+i \cdot \sin( \theta) \right)^{-1}\):

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n} \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-1}= \frac{\cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)}\)

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)} \cdot \frac{ \cos( \theta)-i \cdot \sin( \theta)}{ \cos( \theta)-i \cdot \sin( \theta)}\)

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta) \cos(\theta)-i \cos(n \cdot \theta) \sin(\theta)-i \sin(n \cdot \theta) \cos(\theta)+i^2 \sin(n \cdot \theta) \sin(\theta)}{\cos^2(\theta)+\sin^2(\theta)}\)

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \left(\cos(n \cdot \theta) \cos(\theta)- \sin(n \cdot \theta) \sin(\theta) \right)-i \left(\cos(n \cdot \theta) \sin(\theta)+ \sin(n \cdot \theta) \cos(\theta) \right)\)

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \cos \left((n+1)\theta \right)-i \cdot \sin \left((n+1)\theta \right)\)

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Observing that $\cos(-\theta)=\cos(\theta)$ and $\sin(-\theta)=-\sin(\theta)$, we may state:

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(-n \cdot \theta)+i \cdot \sin(-n \cdot \theta)\)

Thus, we have proved:

\(\displaystyle \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{k}= \cos(k \cdot \theta)+i \cdot \sin(k \cdot \theta)\) where \(\displaystyle k\in\mathbb{Z}\)

i) Given that \(\displaystyle z=\cos(x)+i \cdot \sin(x)\) then we may use our theorem (actually de Moivre's theorem) to state:

\(\displaystyle \frac{1}{z}=z^{-1}=\left(\cos(x)+i \cdot \sin(x) \right)^{-1}=\cos(-x)+i \cdot \sin(-x)\)

ii) And so we may show that:

\(\displaystyle z^n+z^{-n}=\cos(nx)+i \cdot \sin(nx)+\cos(x)-i \cdot \sin(nx)=2 \cos(nx)\)

c) Using the binomial theorem, we find:

\(\displaystyle \left(z+z^{-1} \right)^5=\sum_{k=0}^5{5 \choose k}z^{5-k}z^{-k}=\sum_{k=0}^5{5 \choose k}z^{5-2k}\)

\(\displaystyle \left(z+z^{-1} \right)^5=z^5+5z^3+10z+10z^{-1}+5z^{-3}+z^{-5}\)

\(\displaystyle \left(z+z^{-1} \right)^5=\left(z^5+z^{-5} \right)+5\left(z^3+z^{-3} \right)+10\left(z+z^{-1} \right)\)

Using the result of b) ii) we may state:

\(\displaystyle \left(z+z^{-1} \right)^5=\left(2 \cos(5x) \right)+5\left(2 \cos(3x) \right)+10\left(2 \cos(x) \right)\)

\(\displaystyle \left(z+z^{-1} \right)^5=2 \cos(5x)+10 \cos(3x)+20 \cos(x)\)

i) Using the result of b) ii) we may state:

\(\displaystyle \left(z+z^{-1} \right)^5=\left(2\cos(x) \right)^5=32\cos^5(x)\)

And so using the previous result, we then find:

\(\displaystyle 32\cos^5(x)=2 \cos(5x)+10 \cos(3x)+20 \cos(x)\)

Hence:

\(\displaystyle \cos^5(x)=\frac{1}{16}\left( \cos(5x)+5 \cos(3x)+10 \cos(x) \right)\)

Thus, we have found:

\(\displaystyle a=1,\,b=5,\,c=10\)
 

FAQ: Frank's questions at Yahoo Answers regarding de Moivre's theorem

1. What is de Moivre's theorem?

De Moivre's theorem is a mathematical formula that relates complex numbers to trigonometric functions. It states that for any complex number z and positive integer n, the nth power of z can be expressed as the product of the nth roots of z.

2. How is de Moivre's theorem used in mathematics?

De Moivre's theorem is used in various areas of mathematics, such as complex analysis, probability theory, and differential equations. It is particularly useful in simplifying calculations involving complex numbers and in solving problems related to trigonometric functions.

3. Can you provide an example of de Moivre's theorem?

Sure, for instance, if we have the complex number z = 3 + 4i and we want to find its 4th power, we can use de Moivre's theorem to express it as (3 + 4i)^4 = (5(cos(θ) + i sin(θ)))^4, where θ = arctan(4/3). Using the binomial expansion, we get (5(cos(θ) + i sin(θ)))^4 = 5^4(cos(4θ) + i sin(4θ)) = 625(cos(4arctan(4/3)) + i sin(4arctan(4/3))).

4. How is de Moivre's theorem related to the binomial theorem?

De Moivre's theorem is a special case of the binomial theorem, where the exponent n is a positive integer. The binomial theorem states that for any complex number z and any real number x, (z + x)^n can be expressed as a sum of terms of the form z^kx^(n-k), where k ranges from 0 to n and k is an integer. De Moivre's theorem is a direct application of this, where z is a complex number and x = 1.

5. Are there any real-life applications of de Moivre's theorem?

Yes, de Moivre's theorem has many real-life applications. For example, it is used in electrical engineering to analyze alternating current circuits, in physics to calculate vector quantities, and in finance to model stock prices. It also has applications in fields such as signal processing, acoustics, and quantum mechanics.

Back
Top