MHB Frank's questions at Yahoo Answers regarding de Moivre's theorem

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Theorem
AI Thread Summary
The discussion revolves around Frank's questions related to de Moivre's theorem and its applications in complex numbers. The first part involves proving the theorem using mathematical induction, confirming that (cos(x) + i sin(x))^n equals cos(nx) + i sin(nx) for positive integers n. The second part demonstrates that the inverse of a complex number z can be expressed as cos(-x) + i sin(-x), leading to the conclusion that z^n + z^-n equals 2 cos(nx). Finally, the binomial expansion of (z + z^-1)^5 is derived, showing that cos^5(x) can be expressed as a linear combination of cos(5x), cos(3x), and cos(x) with specific coefficients. The discussion effectively illustrates the application of de Moivre's theorem in complex analysis and trigonometric identities.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Induction and Complex #'s. Calc help?


a) Prove, using mathematical induction, that for a positive integer n, (cos(x) + isinx)^n = cosnx +i sinnx where I^2 + -1

b)The complex number z is defined by z = cosx + isinx
I) show that 1/z = cos (-x) + isin(-x)
II) Deduce that z^n + z^-n = 2cosnx

c) Find the binomial expansion of (z + z^-1)^5
I) Hence show tat cos^5x = 1/16(acoas5x + bcos3x + ccosx) where a,b,c are positive integers to be found.

Thank you so much for you help!

I have posted a link there to this topic, so the OP can see my work.
 
Mathematics news on Phys.org
Hello Frank,

a) First, we check to see if $P_1$ (the case where $n=1$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^1= \cos(1 \cdot \theta)+i \cdot \sin(1 \cdot \theta)$$

$$\cos( \theta)+i \cdot \sin( \theta)= \cos( \theta)+i \cdot \sin( \theta)$$

$P_1$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n= \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\cos( \theta)+i \cdot \sin( \theta)$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^n \left( \cos( \theta)+i \cdot \sin( \theta) \right)= \left( \cos(n \cdot \theta)+i \cdot \sin(n \cdot \theta) \right) \left( \cos( \theta)+i \cdot \sin( \theta) \right)$$

$$ \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos(n \cdot \theta) \cos( \theta)+i \cdot \cos(n \cdot \theta) \sin( \theta)+i \cdot \cos( \theta) \sin(n \cdot \theta)+i^2 \cdot \sin( \theta) \sin(n \cdot \theta)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \left( \cos(n \cdot \theta) \cos( \theta)- \sin(n \cdot \theta) \sin( \theta) \right)+i \left( \sin( \theta) \cos(n \cdot \theta)+ \cos( \theta) \sin(n \cdot \theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left(n \cdot \theta+ \theta \right)+i \cdot \sin \left(n \cdot \theta+ \theta \right)$$

$$\left( \cos(\theta)+i \cdot \sin( \theta) \right)^{n+1}= \cos \left((n+1) \cdot \theta \right)+i \cdot \sin \left((n+1) \cdot \theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

b) For this question and for part c), we will find proving the following useful:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$ where $n\le0\in\mathbb{Z}$

First, we check to see if $P_0$ (the case where $n=0$) is valid.

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^0= \cos(0 \cdot \theta)+i \cdot \sin(0 \cdot \theta)$$

$$1= \cos(0)+i \cdot \sin(0)=1$$

$P_0$ is true. Next, our induction hypothesis $P_n$ is:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)$$

Multiply both sides by $$\left(\cos( \theta)+i \cdot \sin( \theta) \right)^{-1}$$:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n} \left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-1}= \frac{\cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta)-i \cdot \sin(n \cdot \theta)}{ \cos( \theta)+i \cdot \sin( \theta)} \cdot \frac{ \cos( \theta)-i \cdot \sin( \theta)}{ \cos( \theta)-i \cdot \sin( \theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \frac{ \cos(n \cdot \theta) \cos(\theta)-i \cos(n \cdot \theta) \sin(\theta)-i \sin(n \cdot \theta) \cos(\theta)+i^2 \sin(n \cdot \theta) \sin(\theta)}{\cos^2(\theta)+\sin^2(\theta)}$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \left(\cos(n \cdot \theta) \cos(\theta)- \sin(n \cdot \theta) \sin(\theta) \right)-i \left(\cos(n \cdot \theta) \sin(\theta)+ \sin(n \cdot \theta) \cos(\theta) \right)$$

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-(n+1)}= \cos \left((n+1)\theta \right)-i \cdot \sin \left((n+1)\theta \right)$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Observing that $\cos(-\theta)=\cos(\theta)$ and $\sin(-\theta)=-\sin(\theta)$, we may state:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{-n}= \cos(-n \cdot \theta)+i \cdot \sin(-n \cdot \theta)$$

Thus, we have proved:

$$\left( \cos( \theta)+i \cdot \sin( \theta) \right)^{k}= \cos(k \cdot \theta)+i \cdot \sin(k \cdot \theta)$$ where $$k\in\mathbb{Z}$$

i) Given that $$z=\cos(x)+i \cdot \sin(x)$$ then we may use our theorem (actually de Moivre's theorem) to state:

$$\frac{1}{z}=z^{-1}=\left(\cos(x)+i \cdot \sin(x) \right)^{-1}=\cos(-x)+i \cdot \sin(-x)$$

ii) And so we may show that:

$$z^n+z^{-n}=\cos(nx)+i \cdot \sin(nx)+\cos(x)-i \cdot \sin(nx)=2 \cos(nx)$$

c) Using the binomial theorem, we find:

$$\left(z+z^{-1} \right)^5=\sum_{k=0}^5{5 \choose k}z^{5-k}z^{-k}=\sum_{k=0}^5{5 \choose k}z^{5-2k}$$

$$\left(z+z^{-1} \right)^5=z^5+5z^3+10z+10z^{-1}+5z^{-3}+z^{-5}$$

$$\left(z+z^{-1} \right)^5=\left(z^5+z^{-5} \right)+5\left(z^3+z^{-3} \right)+10\left(z+z^{-1} \right)$$

Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2 \cos(5x) \right)+5\left(2 \cos(3x) \right)+10\left(2 \cos(x) \right)$$

$$\left(z+z^{-1} \right)^5=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

i) Using the result of b) ii) we may state:

$$\left(z+z^{-1} \right)^5=\left(2\cos(x) \right)^5=32\cos^5(x)$$

And so using the previous result, we then find:

$$32\cos^5(x)=2 \cos(5x)+10 \cos(3x)+20 \cos(x)$$

Hence:

$$\cos^5(x)=\frac{1}{16}\left( \cos(5x)+5 \cos(3x)+10 \cos(x) \right)$$

Thus, we have found:

$$a=1,\,b=5,\,c=10$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top