- #1
DavidTheGreat
<Moderator's note: Moved from elsewhere and therefore no template.>
I'm trying to calculate the distance of free fall for an object with zero tangential velocity but a given radial velocity at a given height over a given period of time. This calculation cannot assume that g is constant as it deals with orbital heights. These calculations are needed for an orbital ring that I'm designing. Here is my working out so far.
1.) F=ma
2.) F=GMm/R^2
Sub 1.) into 2.)
ma=GMm/R^2
a=GM/R^2
v=da/dt
v=d/dt(GM/R^2)
v=GM d/dt(1/R^2)
R=dv/dt
R=GM d^2/dt^2(1/R^2)
I can't figure out how to solve this second order differential equation. Is there a better way of doing it/where did I go wrong?
I'm trying to calculate the distance of free fall for an object with zero tangential velocity but a given radial velocity at a given height over a given period of time. This calculation cannot assume that g is constant as it deals with orbital heights. These calculations are needed for an orbital ring that I'm designing. Here is my working out so far.
1.) F=ma
2.) F=GMm/R^2
Sub 1.) into 2.)
ma=GMm/R^2
a=GM/R^2
v=da/dt
v=d/dt(GM/R^2)
v=GM d/dt(1/R^2)
R=dv/dt
R=GM d^2/dt^2(1/R^2)
I can't figure out how to solve this second order differential equation. Is there a better way of doing it/where did I go wrong?
Last edited by a moderator: