- #1
mikeph
- 1,235
- 18
Hello, I am having a little trouble getting to the fundamentals of FM (laser) spectroscopy. As I understand from some research, the frequency of the incident beam is varied with a second frequency much larger than the first:
Bjorklund 1980: "The key concept is that the modulator is driven at radio frequencies that are large compared to the width of the spectral feature of interest... As a result, the FM sidebands are widely separated and the spectral feature of interest can be probed by a single isolated sideband. Both the absorption and the dispersion associated with the spectral feature can be separately measured by monitoring the phase and amplitude of the rf heterodyne beat signal that occurs when the FM spectrum is distored by the effects of the spectral feature on the probing sideband."
I have trouble understanding what this means, not knowing what these terms mean: "sideband" (how can a continuous frequency modulation lead to 'widely separated sidebands'?), and "rf heterodyne beat signal", which has not been defined earlier in the paper. I have another source which states:
Allen 1998: "The oldest and most common approach for sensitive absorption measurements with diode lasers involves high-speed modulation of the laser injection current, introducing amplitude and frequency modulation on the output beam. These techniques are broadly termed frequency-modulating (FM) spectroscopy. Using phase-sensitive detection at some harmonic of the modulation frequency, background-equivalent absorbances of ~ 10^−7 have been demonstrated"
So I know what happens- they do this modulation and get more sensitive measurements, but I can't figure out why this works, and feel a bit restricted because I don't have a background in electrical engineering. If forced to have an educated guess, I'd say they were scanning the laser back and forth across the spectral peak, and then look at the transmission once every scan for a certain phase, the phase where the scan hits the peak? And then from this collection of results, they can work out the absorption? I don't understand why this gives you more accurate results by such a huge factor.
Thanks for any help,
Mike
Bjorklund 1980: "The key concept is that the modulator is driven at radio frequencies that are large compared to the width of the spectral feature of interest... As a result, the FM sidebands are widely separated and the spectral feature of interest can be probed by a single isolated sideband. Both the absorption and the dispersion associated with the spectral feature can be separately measured by monitoring the phase and amplitude of the rf heterodyne beat signal that occurs when the FM spectrum is distored by the effects of the spectral feature on the probing sideband."
I have trouble understanding what this means, not knowing what these terms mean: "sideband" (how can a continuous frequency modulation lead to 'widely separated sidebands'?), and "rf heterodyne beat signal", which has not been defined earlier in the paper. I have another source which states:
Allen 1998: "The oldest and most common approach for sensitive absorption measurements with diode lasers involves high-speed modulation of the laser injection current, introducing amplitude and frequency modulation on the output beam. These techniques are broadly termed frequency-modulating (FM) spectroscopy. Using phase-sensitive detection at some harmonic of the modulation frequency, background-equivalent absorbances of ~ 10^−7 have been demonstrated"
So I know what happens- they do this modulation and get more sensitive measurements, but I can't figure out why this works, and feel a bit restricted because I don't have a background in electrical engineering. If forced to have an educated guess, I'd say they were scanning the laser back and forth across the spectral peak, and then look at the transmission once every scan for a certain phase, the phase where the scan hits the peak? And then from this collection of results, they can work out the absorption? I don't understand why this gives you more accurate results by such a huge factor.
Thanks for any help,
Mike