Fresnel Lens - Solve for Lithography & Power

AI Thread Summary
The discussion focuses on calculations involving a Fresnel lens for lithography and power. The initial formula used, M = (lambda*f)/r_n, yielded a magnification of 29.48 nm, which was verified as correct. However, the subsequent calculation for focal length using f = r^2/(n*lambda) resulted in a focal length of 390.625, leading to a power in diopters of 2.56x10^03, which the user feels is too small. The user expresses uncertainty about the calculations and seeks clarification on potential errors or incorrect expressions used. The thread highlights the complexities of optical calculations in lithography applications.
Schreiber__
Messages
4
Reaction score
1
Homework Statement
Fresnel lens Part 1: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of 𝜇𝑚 to one decimal point.

Fresnel lens Part 2: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point.
Relevant Equations
M = lambda/NA = (lambda*f)/r_n -> Part 1
f = r^2/(n*lambda) -> Part 2
For the first part, I got correct:
M = (lambda*f)/r_n
Converting units to meters (m) then plugging them in:
(550x10^-9 m) * (0.67 m)/(0.0125 m) = 2.948x10^-5 or 29.48x10^-6 m or 29.48 nm
This checked out.

For the second part, using the information from the first part:
f = r^2/(n*lambda) = (0.0125 m)^2/(1*400x10^-9m) = 390.625

To calculate the power in diopters we take 1/f = 1/390.625 = 2.56x10^03 ! This seems too small of a value.

I am missing something here or have used an incorrect expression.

Thanks for the help!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top