- #1
domephilis
- 54
- 6
[Mentor Note: Two threads merged below and the OP has fixed up their LaTeX in later posts]
TL;DR Summary: A billiard ball with zero angular velocity and linear velocity v_0 is released on a horizontal surface with coefficient of friction mu_k. It begins to roll without slipping after travelling a distance d. Show that mu_k = \frac{12v_0^2}{49gd}.
Question: A billiard ball with zero angular velocity and linear velocity v_0 is released on a horizontal surface with coefficient of friction mu_k. It begins to roll without slipping after travelling a distance d. Show that $mu_k = \frac{12v_0^2}{49gd}$.
Using energy principles, I was able to get to this point:
$\mu_k = \frac{1}{gd}(\frac{v_0^2}{2}-\frac{7}{10}v^2)$
What I am currently struggling to do is relating the velocity at distance d and the velocity at the start. I have tried using the torque to find the angular velocity at distance d and use ##v = r\omega## (we can do so since we are rolling without slipping at that point). That didn't lead anywhere because I have no idea how long it takes to reach distance d nor do I know what angle theta has been rotated after travelling d. I am really stuck here and would greatly appreciate any hint or help. Thank you.
TL;DR Summary: A billiard ball with zero angular velocity and linear velocity v_0 is released on a horizontal surface with coefficient of friction mu_k. It begins to roll without slipping after travelling a distance d. Show that mu_k = \frac{12v_0^2}{49gd}.
Question: A billiard ball with zero angular velocity and linear velocity v_0 is released on a horizontal surface with coefficient of friction mu_k. It begins to roll without slipping after travelling a distance d. Show that $mu_k = \frac{12v_0^2}{49gd}$.
Using energy principles, I was able to get to this point:
$\mu_k = \frac{1}{gd}(\frac{v_0^2}{2}-\frac{7}{10}v^2)$
What I am currently struggling to do is relating the velocity at distance d and the velocity at the start. I have tried using the torque to find the angular velocity at distance d and use ##v = r\omega## (we can do so since we are rolling without slipping at that point). That didn't lead anywhere because I have no idea how long it takes to reach distance d nor do I know what angle theta has been rotated after travelling d. I am really stuck here and would greatly appreciate any hint or help. Thank you.
Last edited by a moderator: