- #1
- 24,775
- 792
This is take 2.0 of the earlier thread, which got a lot of help from George J., Jorrie, Wabbit, Ken G, and others. I'm exploring this simplification of the flat matter-dominated ΛCDM model (basically anything after year 1 million) to see if there is a presentation that would be suitable for PF Insights.
And if not that's fine too. It's a Cosmology forum thread.
The point is the universe's own behavior defines a natural time scale for us. The rate of distance growth H is declining and leveling out so that it approaches a constant longterm rate H∞. That rate defines a natural unit of time (let's call it a "zeon" to rhyme with "aeon").
If we use zeons instead of (billions of) Earth years the equations get simpler and the numbers get easier to handle.
How I want to present this is first with examples without any theory. Imagine you go to visit some astronomer friends at an observatory. They have several distant galaxies in view and are sampling incoming light to measure its redshift z (or for our purposes the stretch factor s = z+1 by which the wavelengths have been enlarged.) s = 2 means the incoming wavelengths from that galaxy are twice what they were when the light was emitted.
Suppose you have a hand calculator or a cell-phone app that can do the log and square root functions---basic math. Your friend tells you the wave stretch factor s = 2, or 3, or 4.
You can tell from that some things about conditions back when the light was emitted. You can tell what size distances were back then compared with what they are now, just by how much the light was stretched in transit. You can also tell what the expansion rate was back when the light started on its way. $$ H = \sqrt{.443s^3 +1}$$
And you can tell the time when the light was emitted, what the expansion age was back then, how long it had been since the start of expansion.
$$T = \ln(\frac{H+1}{H-1})/3$$
These aren't difficult formulas, as equations go. the light itself is telling you how long it has been traveling, when it started, what size distances were compared to present , how rapid expansion was back then. And to top it off, if your mobile device can google "definite integral calculator" it can find for you the distance D that the light has covered, aided by expansion. It can tell you how far away the source galaxy is now (and dividing D by s tells how far away it was back when the light started out.)
$$D = \int_1^s \frac{ds}{\sqrt{.443s^3 + 1}}$$
And if not that's fine too. It's a Cosmology forum thread.
The point is the universe's own behavior defines a natural time scale for us. The rate of distance growth H is declining and leveling out so that it approaches a constant longterm rate H∞. That rate defines a natural unit of time (let's call it a "zeon" to rhyme with "aeon").
If we use zeons instead of (billions of) Earth years the equations get simpler and the numbers get easier to handle.
How I want to present this is first with examples without any theory. Imagine you go to visit some astronomer friends at an observatory. They have several distant galaxies in view and are sampling incoming light to measure its redshift z (or for our purposes the stretch factor s = z+1 by which the wavelengths have been enlarged.) s = 2 means the incoming wavelengths from that galaxy are twice what they were when the light was emitted.
Suppose you have a hand calculator or a cell-phone app that can do the log and square root functions---basic math. Your friend tells you the wave stretch factor s = 2, or 3, or 4.
You can tell from that some things about conditions back when the light was emitted. You can tell what size distances were back then compared with what they are now, just by how much the light was stretched in transit. You can also tell what the expansion rate was back when the light started on its way. $$ H = \sqrt{.443s^3 +1}$$
And you can tell the time when the light was emitted, what the expansion age was back then, how long it had been since the start of expansion.
$$T = \ln(\frac{H+1}{H-1})/3$$
These aren't difficult formulas, as equations go. the light itself is telling you how long it has been traveling, when it started, what size distances were compared to present , how rapid expansion was back then. And to top it off, if your mobile device can google "definite integral calculator" it can find for you the distance D that the light has covered, aided by expansion. It can tell you how far away the source galaxy is now (and dividing D by s tells how far away it was back when the light started out.)
$$D = \int_1^s \frac{ds}{\sqrt{.443s^3 + 1}}$$
Last edited: