MHB From quadratic form to vertex form

AI Thread Summary
To convert the quadratic expression $-x^2 + 4x - 1$ into vertex form, the completing the square method is suggested. The negative sign in front of the $x^2$ term complicates the process, and factoring it out simplifies the equation. By rewriting the expression as $-(x^2 - 4x + 1)$, the vertex form can be derived. The final result is $y = -(x - 2)^2 + 3$, indicating the vertex at (2, 3). This method effectively clarifies the transformation into vertex form.
mathlearn
Messages
331
Reaction score
0
$-x^2+4x-1$ should be converted to the vertex form of $y=k-(x-h)^2$

How can this be solved by factoring or any other method ?

My attempt to solve this problem , I will be using the completing the square method,

$\left(-x^2+4x+\frac{-b}{2a}\right)=1+\frac{-b}{2a}$

Here $\frac{-4}{-2}=2$

$\left(-x^2+4x+2\right)=1+2$

$\left(-x+2\right)^2=1+2$

$\left(-x+2\right)^2+3$

It's incorrect

Many Thanks (Happy)
 
Last edited:
Mathematics news on Phys.org
mathlearn said:
$-x^2+4x-1$ should be converted to the vertex form of $y=k-(x-h)^2$

How can this be solved by factoring or any other method ?

My attempt to solve this problem , I will be using the completing the square method,

$\left(-x^2+4x+\frac{-b}{2a}\right)=1+\frac{-b}{2a}$

Here $\frac{-4}{-2}=2$

$\left(-x^2+4x+2\right)=1+2$

$\left(-x+2\right)^2=1+2$

$\left(-x+2\right)^2+3$

It's incorrect

Many Thanks (Happy)
It's the negative in front of the x^2 term that's causing you problems. I'd factor it out at the beginning:
[math]y = -x^2 + 4x - 1 = -(x^2 - 4x + 1) = \text{ ... }[/math]

I get [math]y = -(x - 2)^2 + 3[/math].

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top