- #36
Mehdi_
- 65
- 0
Complex numbers & orthogonal matrices
A complex number is written in the form [tex]z=a+ib[/tex] where [itex]a[/itex] and [tex]b[/tex] are real numbers while [tex]i[/tex] is a symbole which satisfy [tex]i^2=-1[/tex].
In polar coordinates, [tex]z=r(cos(\theta)+isin(\theta))[/tex] where [itex]r[/itex] is the magnitude and [tex]\theta[/tex] is the angle.
However complex numbers could also be viewed as linear transformation and therefore matrices which obey linear algebra.
A complex number could then be represented by the orthogonal matrice :
[tex] z = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] = \left[ \begin {array}{cc} a&0\\\noalign{\medskip}0&a\end {array} \right] + \left[ \begin {array}{cc} 0&-1\\\noalign{\medskip}1&0\end {array} \right] \left[ \begin {array}{cc} b&0\\\noalign{\medskip}0&b\end {array} \right] = a+ib [/tex]
Which in polar coordinates could also be written :
[tex] z = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] = \left[ \begin {array}{cc} r&0\\\noalign{\medskip}0&r\end {array} \right] \left[ \begin {array}{cc} cos(\theta)&-sin(\theta)\\\noalign{\medskip}sin(\theta)&cos(\theta)\end {array} \right] = r(cos(\theta)+isin(\theta)) [/tex]
Therefore, complex addition is just matrix addition :
[tex] (a+ib) + (c+id) = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] + \left[ \begin {array}{cc} c&-d\\\noalign{\medskip}d&c\end {array} \right] = \left[ \begin {array}{cc} \left\{ a+c \right\} &- \left\{ b+d \right\} \\\noalign{\medskip} \left\{ b+d \right\} & \left\{ a+c
\right\} \end {array} \right] = (a+c) + i (b+d) [/tex]
And complex substraction is matrix substraction :
[tex] (a+ib) - (c+id) = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] - \left[ \begin {array}{cc} c&-d\\\noalign{\medskip}d&c\end {array} \right] = \left[ \begin {array}{cc} \left\{ a-c \right\} &- \left\{ b-d \right\} \\\noalign{\medskip} \left\{ b-d \right\} & \left\{ a-c
\right\} \end {array} \right] = (a-c) + i (b-d) [/tex]
Complex multiplication is matrix multiplication :
[tex] (a+ib) (c+id) = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] \left[ \begin {array}{cc} c&-d\\\noalign{\medskip}d&c\end {array} \right] = \left[ \begin {array}{cc} \left\{ ac-bd \right\} &- \left\{ bc+ad \right\} \\\noalign{\medskip} \left\{ bc+ad \right\} & \left\{ ac-bd
\right\} \end {array} \right] = (ac-bd) + i (bc + ad) [/tex]
The complex conjugate [tex]\overline{z}[/tex] of [itex]z[/itex] is :
[tex] \overline{z} = a -ib = \left[ \begin {array}{cc} a&b\\\noalign{\medskip}-b&a\end {array} \right] [/tex]
we can then write that :
[tex] |z|^2 = z \overline{z} = (a + i b) (a -i b) = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] \left[ \begin {array}{cc} a&b\\\noalign{\medskip}-b&a\end {array} \right] = \left[ \begin {array}{cc} {a}^{2}+{b}^{2}&0\\\noalign{\medskip}0&{a}^{2}+{b}^{2}\end {array} \right] =a^2 + b^2 [/tex]
[itex]|z| = \sqrt{a^2 + b^2} [/itex] is then the modulus.
Therefore,
[tex]1/z = \overline{z} / |z|^2 [/tex].
Proof:
[tex]1/z = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right]^{-1} = \left[ \begin {array}{cc} {\frac {a}{{a}^{2}+{b}^{2}}}&{\frac {b}{{a}^{2}+{b}^{2}}}\\\noalign{\medskip}-{\frac {b}{{a}^{2}+{b}^{2}}}&{\frac {a}{{a}^{2}+{b}^{2}}}\end {array} \right] = \left[ \begin {array}{cc} a&b\\\noalign{\medskip}-b&a\end {array} \right] \left[ \begin {array}{cc} \left( {a}^{2}+{b}^{2} \right) ^{-1}&0\\\noalign{\medskip}0& \left( {a}^{2}+{b}^{2} \right) ^{-1} \end {array} \right] = \left[ \begin {array}{cc} a&b\\\noalign{\medskip}-b&a\end {array} \right] / \left[ \begin {array}{cc} {a}^{2}+{b}^{2}&0\\\noalign{\medskip}0&{a}^{2}+{b}^{2}\end {array} \right] = \overline{z} / |z|^2 [/tex]
A complex number is written in the form [tex]z=a+ib[/tex] where [itex]a[/itex] and [tex]b[/tex] are real numbers while [tex]i[/tex] is a symbole which satisfy [tex]i^2=-1[/tex].
In polar coordinates, [tex]z=r(cos(\theta)+isin(\theta))[/tex] where [itex]r[/itex] is the magnitude and [tex]\theta[/tex] is the angle.
However complex numbers could also be viewed as linear transformation and therefore matrices which obey linear algebra.
A complex number could then be represented by the orthogonal matrice :
[tex] z = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] = \left[ \begin {array}{cc} a&0\\\noalign{\medskip}0&a\end {array} \right] + \left[ \begin {array}{cc} 0&-1\\\noalign{\medskip}1&0\end {array} \right] \left[ \begin {array}{cc} b&0\\\noalign{\medskip}0&b\end {array} \right] = a+ib [/tex]
Which in polar coordinates could also be written :
[tex] z = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] = \left[ \begin {array}{cc} r&0\\\noalign{\medskip}0&r\end {array} \right] \left[ \begin {array}{cc} cos(\theta)&-sin(\theta)\\\noalign{\medskip}sin(\theta)&cos(\theta)\end {array} \right] = r(cos(\theta)+isin(\theta)) [/tex]
Therefore, complex addition is just matrix addition :
[tex] (a+ib) + (c+id) = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] + \left[ \begin {array}{cc} c&-d\\\noalign{\medskip}d&c\end {array} \right] = \left[ \begin {array}{cc} \left\{ a+c \right\} &- \left\{ b+d \right\} \\\noalign{\medskip} \left\{ b+d \right\} & \left\{ a+c
\right\} \end {array} \right] = (a+c) + i (b+d) [/tex]
And complex substraction is matrix substraction :
[tex] (a+ib) - (c+id) = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] - \left[ \begin {array}{cc} c&-d\\\noalign{\medskip}d&c\end {array} \right] = \left[ \begin {array}{cc} \left\{ a-c \right\} &- \left\{ b-d \right\} \\\noalign{\medskip} \left\{ b-d \right\} & \left\{ a-c
\right\} \end {array} \right] = (a-c) + i (b-d) [/tex]
Complex multiplication is matrix multiplication :
[tex] (a+ib) (c+id) = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] \left[ \begin {array}{cc} c&-d\\\noalign{\medskip}d&c\end {array} \right] = \left[ \begin {array}{cc} \left\{ ac-bd \right\} &- \left\{ bc+ad \right\} \\\noalign{\medskip} \left\{ bc+ad \right\} & \left\{ ac-bd
\right\} \end {array} \right] = (ac-bd) + i (bc + ad) [/tex]
The complex conjugate [tex]\overline{z}[/tex] of [itex]z[/itex] is :
[tex] \overline{z} = a -ib = \left[ \begin {array}{cc} a&b\\\noalign{\medskip}-b&a\end {array} \right] [/tex]
we can then write that :
[tex] |z|^2 = z \overline{z} = (a + i b) (a -i b) = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right] \left[ \begin {array}{cc} a&b\\\noalign{\medskip}-b&a\end {array} \right] = \left[ \begin {array}{cc} {a}^{2}+{b}^{2}&0\\\noalign{\medskip}0&{a}^{2}+{b}^{2}\end {array} \right] =a^2 + b^2 [/tex]
[itex]|z| = \sqrt{a^2 + b^2} [/itex] is then the modulus.
Therefore,
[tex]1/z = \overline{z} / |z|^2 [/tex].
Proof:
[tex]1/z = \left[ \begin {array}{cc} a&-b\\\noalign{\medskip}b&a\end {array} \right]^{-1} = \left[ \begin {array}{cc} {\frac {a}{{a}^{2}+{b}^{2}}}&{\frac {b}{{a}^{2}+{b}^{2}}}\\\noalign{\medskip}-{\frac {b}{{a}^{2}+{b}^{2}}}&{\frac {a}{{a}^{2}+{b}^{2}}}\end {array} \right] = \left[ \begin {array}{cc} a&b\\\noalign{\medskip}-b&a\end {array} \right] \left[ \begin {array}{cc} \left( {a}^{2}+{b}^{2} \right) ^{-1}&0\\\noalign{\medskip}0& \left( {a}^{2}+{b}^{2} \right) ^{-1} \end {array} \right] = \left[ \begin {array}{cc} a&b\\\noalign{\medskip}-b&a\end {array} \right] / \left[ \begin {array}{cc} {a}^{2}+{b}^{2}&0\\\noalign{\medskip}0&{a}^{2}+{b}^{2}\end {array} \right] = \overline{z} / |z|^2 [/tex]
Last edited: