- #1
SeniorGara
- 1
- 0
- TL;DR Summary
- Does the fuel paradox arise when the same engine operates with different power in different frames of reference?
I have encountered a problem related to the Galilean Transformation. Let's consider two observers who will be referred to as ##O## and ##O^{'}##, with their corresponding coordinates ##(t,x,y,z)## and ##(t^{′},x^{′},y^{′},z^{'})## respectively. They are initially at the same location, at time zero. Furthermore, observer ##O^{'}## moves away from observer ##O## as shown in the picture.
Any point ##P## that does not move in relation to ##O## will be described by ##O^{'}## with the following equations: $$x_{P}'=x_{P}-vt,\quad{y'_{P}=y_{P},}\quad{z'_{P}=z_{P},}\quad{t'=t}.$$ If an object (for example a car) moves in relation to ##O## according to the equation $$x(t)=vt+\frac{1}{2}at^2,$$ ##O'## will describe this movement in the following way: $$x'(t)=x(t)-vt=\frac{1}{2}at^2.$$ Assuming that no resistance force is present, the resultant force is equal to the force of engine thrust. Of course, ##F=F'=ma## because ##\ddot{x}(t)=\ddot{x'}(t)=a##. Observer ##O## claims that the work done by the force of engine thrust is equal to $$W(t)=F\cdot{x(t)}=ma\left(vt+\frac{1}{2}at^2\right)=mavt+\frac{1}{2}ma^2t^2\mathrm{,}$$ whereas ##O'## observes that the engine has performed work equal to $$W'(t)=F'\cdot{x'(t)}=ma\left(\frac{1}{2}at^2\right)=\frac{1}{2}ma^2t^2.$$ Thus, ##O## concludes that the engine is operating at power $$P(t)=\frac{dW}{dt}(t)=mav+ma^2t,$$ while ##O'## considers that the engine power is equal to $$P'(t)=\frac{dW'}{dt}(t)=ma^2t.$$ Here is my question: If the same engine works with different power in two frames of reference, wouldn't it lead to the "fuel paradox"? In other words, according to ##O##, the fuel will be depleted faster than according to ##O'##. Of course, it can't be true. So, where is the mistake?
Any point ##P## that does not move in relation to ##O## will be described by ##O^{'}## with the following equations: $$x_{P}'=x_{P}-vt,\quad{y'_{P}=y_{P},}\quad{z'_{P}=z_{P},}\quad{t'=t}.$$ If an object (for example a car) moves in relation to ##O## according to the equation $$x(t)=vt+\frac{1}{2}at^2,$$ ##O'## will describe this movement in the following way: $$x'(t)=x(t)-vt=\frac{1}{2}at^2.$$ Assuming that no resistance force is present, the resultant force is equal to the force of engine thrust. Of course, ##F=F'=ma## because ##\ddot{x}(t)=\ddot{x'}(t)=a##. Observer ##O## claims that the work done by the force of engine thrust is equal to $$W(t)=F\cdot{x(t)}=ma\left(vt+\frac{1}{2}at^2\right)=mavt+\frac{1}{2}ma^2t^2\mathrm{,}$$ whereas ##O'## observes that the engine has performed work equal to $$W'(t)=F'\cdot{x'(t)}=ma\left(\frac{1}{2}at^2\right)=\frac{1}{2}ma^2t^2.$$ Thus, ##O## concludes that the engine is operating at power $$P(t)=\frac{dW}{dt}(t)=mav+ma^2t,$$ while ##O'## considers that the engine power is equal to $$P'(t)=\frac{dW'}{dt}(t)=ma^2t.$$ Here is my question: If the same engine works with different power in two frames of reference, wouldn't it lead to the "fuel paradox"? In other words, according to ##O##, the fuel will be depleted faster than according to ##O'##. Of course, it can't be true. So, where is the mistake?