MHB Function Composition: Restrictions for Domains

AI Thread Summary
To define the composite functions \(G \circ F\), \(H \circ G\), \(H \circ (G \circ F)\), and \((H \circ G) \circ F\), specific restrictions on the domains of the functions \(F\), \(G\), and \(H\) are necessary. The image of \(F\) must be a subset of the domain of \(G\), and the image of \(G\) must be a subset of the domain of \(H\). This ensures that each function can accept the output of the preceding function in the composition. For example, if \(F(x) = x + 5\) and \(G(x)\) is defined for all real numbers, then the conditions are satisfied. Properly defining these composite functions requires careful consideration of the relationships between their domains and codomains.
Dustinsfl
Messages
2,217
Reaction score
5
Given three functions $F,G,H$ what restrictions must be placed on their domains so that the following four composite functions can be defined?
$$
G\circ F,\quad H\circ G,\quad H\circ (G\circ F),\quad (H\circ G)\circ F.
$$

I need a hint or something.
 
Mathematics news on Phys.org
I'd say that in each case you'd need $\textrm{Im }F \subset D_G, \text{ I am }G \subset D_H, \text{ I am }G \circ F \subset D_H$ and $\text{Im }F \subset D_{H \circ G}$.

Taking as example your other thread, we need $\text{Im }F \subset D_G$, where $F(x) = x+5$ and

$$G(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 1, & \text{if } x= 0. \end{cases}$$

For $\text{Im }F$ to be contained in the domain of $G$, we need to investigate the cases where $F(x) \neq 0$ and $F(x)=0$. In particular, here we have $\text{Im }F = \mathbb{R}$ and $D_G = \mathbb{R}$ since it is defined everywhere (although it isn't continuous).
 
dwsmith said:
Given three functions $F,G,H$ what restrictions must be placed on their domains so that the following four composite functions can be defined?
$$
G\circ F,\quad H\circ G,\quad H\circ (G\circ F),\quad (H\circ G)\circ F.
$$

I need a hint or something.

Hi dwsmith, :)

If \(G\circ F\) is to be defined properly the co-domain of \(F\) should be a subset of the domain of \(G\). Therefore the only restrictions in defining the above mentioned compositions are,

\[\mbox{codom }(F)\subseteq\mbox{dom }(G)\mbox{ and }\mbox{codom }(G)\subseteq\mbox{dom }(H)\]

Kind Regards,
Sudharaka.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top