- #1
spaghetti3451
- 1,344
- 34
Consider the partition function ##Z[J]## of the Klein-Gordon theory
##Z[J] =\int \mathcal{D}\phi\ e^{i\int d^{4}x\ [\frac{1}{2}(\partial\phi)^{2}-\frac{1}{2}m^{2}\phi^{2}+J\phi]}
=\int \mathcal{D}\phi\ e^{-i\int d^{4}x\ [\frac{1}{2}\phi(\partial^{2}+m^{2})\phi]}\ e^{i\int d^{4}x\ J\phi}##
If the operator ##\partial^{2}+m^{2}## is symmetric and positive-definite, then
##Z[J]=\int \mathcal{D}\phi\ e^{i\int d^{4}x\ [\frac{1}{2}\phi(-\partial^{2}-m^{2})\phi]}\ e^{-\frac{i}{2}\int d^{4}x\ J(-\partial^{2}-m^{2})^{-1}J(x)}.##The assumption of symmetry and positive-definiteness of the operator ##\partial^{2}+m^{2}## is crucial in the derivation of the Feynman diagrammatic rules of the scalar theory from the partition function of the scalar theory.What does it mean for an operator to be symmetric and positive-definite? Does it mean that its matrix representation in any basis is symmetric and positive-definite?
##Z[J] =\int \mathcal{D}\phi\ e^{i\int d^{4}x\ [\frac{1}{2}(\partial\phi)^{2}-\frac{1}{2}m^{2}\phi^{2}+J\phi]}
=\int \mathcal{D}\phi\ e^{-i\int d^{4}x\ [\frac{1}{2}\phi(\partial^{2}+m^{2})\phi]}\ e^{i\int d^{4}x\ J\phi}##
If the operator ##\partial^{2}+m^{2}## is symmetric and positive-definite, then
##Z[J]=\int \mathcal{D}\phi\ e^{i\int d^{4}x\ [\frac{1}{2}\phi(-\partial^{2}-m^{2})\phi]}\ e^{-\frac{i}{2}\int d^{4}x\ J(-\partial^{2}-m^{2})^{-1}J(x)}.##The assumption of symmetry and positive-definiteness of the operator ##\partial^{2}+m^{2}## is crucial in the derivation of the Feynman diagrammatic rules of the scalar theory from the partition function of the scalar theory.What does it mean for an operator to be symmetric and positive-definite? Does it mean that its matrix representation in any basis is symmetric and positive-definite?