- #1
Oxymoron
- 870
- 0
Question 1
Prove that if [itex](V, \|\cdot\|)[/itex] is a normed vector space, then
[tex] \left| \|x\| - \|y\| \right| \leq \|x-y\|[/tex]
for every [itex]x,y \in V[/itex]. Then deduce that the norm is a continuous function from [itex]V[/itex] to [itex]\mathbb{R}[/itex].
Prove that if [itex](V, \|\cdot\|)[/itex] is a normed vector space, then
[tex] \left| \|x\| - \|y\| \right| \leq \|x-y\|[/tex]
for every [itex]x,y \in V[/itex]. Then deduce that the norm is a continuous function from [itex]V[/itex] to [itex]\mathbb{R}[/itex].