- #1
Caramon
- 133
- 5
Homework Statement
Hi, I'm working on research and I hit a roadblock with something that should be very simple but I can't solve it because it gets so messy. If anyone can let me know how to do this, it would be greatly appreciated.
I have a functional T:
[tex]
T = \int_{\lambda_{1}}^{\lambda_{2}} sqrt{\sum_{I=1}^{n}} \sum_{i=1}^{d} (\frac{d}{d \lambda}(\sum_{j=1}^{d} s(\lambda) R_{j}^{i}(\lambda)(q_{I}^{j}(\lambda) + a^{j}(\lambda))))^2} d \lambda
[/tex]
I need to take functional derivatives with respect to each function defining T and find when they are all concurrently zero. I believe, the Euler-Lagrange equation is able to do this?
I found what [tex]\frac{\partial{f}}{\partial{g}}[/tex] is, where g is just a place holder for [tex]s(\lambda), R_{j}^{i}(\lambda), a^{j}(\lambda), q_{I}^{j}(\lambda)[/tex]
Everytime I tried substituting say, df/dR, or df/ds I would get a huge 22-term, with 5 derivatives, impossible equation that I would have to take f with respected to, where [tex]T = \int_{\lambda_{1}}^{\lambda_{2}} f d \lambda.[/tex]
I'm looking at this euler-lagrange form:
[tex]\frac{\partial{f}}{\partial{x}} = \frac{d}{d \lambda} (\left \frac{\partial{f}}{\frac{d}{d \lambda}(\frac{\partial{f}}{\partial{x}})} \right) = 0 [/tex]
Where, each member [tex]s(\lambda), R_{j}^{i}(\lambda), a^{j}(\lambda), q_{I}^{j}(\lambda)[/tex] are in terms of "x".
Any tips, advice, ideas would be great.