- #1
maguirpi
- 1
- 0
Hi everyone, long time lurker, first time poster.
I've just begun a phd which involves nanoribbons (a small strip of a 2D material connected at either end to a larger 'bulk' section of the same 2D material). A question has occurred to me. These nanoribbons look a lot like a piece of string in a violin/sonometer (although the tension is obviously not easily tuneable). This means that they should have a frequency of vibration like a piece of string in classical experiments. I'd really like to estimatethis (for fun, not homework or anything like that).
Using electron and ion microscopy we know what the width, height and breadth are. We know the density as we know the material. So basically in the equation attached, what we don't know is the tension. I guess this is going to be quite small anyway. The only thing I can think to do is estimate the number of atoms at each end and use the bond energy/distance. This will allow me to calculate a total force and use this as my upper bound on tension. I'm totally open to other ideas though, maybe using material properties or a different approach. My classical mechanics might be rusty too!
If you need anything clarified as well please just ask.
Thanks in advance for your help,
Maguirpi
I've just begun a phd which involves nanoribbons (a small strip of a 2D material connected at either end to a larger 'bulk' section of the same 2D material). A question has occurred to me. These nanoribbons look a lot like a piece of string in a violin/sonometer (although the tension is obviously not easily tuneable). This means that they should have a frequency of vibration like a piece of string in classical experiments. I'd really like to estimatethis (for fun, not homework or anything like that).
Using electron and ion microscopy we know what the width, height and breadth are. We know the density as we know the material. So basically in the equation attached, what we don't know is the tension. I guess this is going to be quite small anyway. The only thing I can think to do is estimate the number of atoms at each end and use the bond energy/distance. This will allow me to calculate a total force and use this as my upper bound on tension. I'm totally open to other ideas though, maybe using material properties or a different approach. My classical mechanics might be rusty too!
If you need anything clarified as well please just ask.
Thanks in advance for your help,
Maguirpi