- #1
jacquesb
- 16
- 0
I will first summarize the construction of ordinal numbers and introduce the definition of the binary Veblen function and of the notion of fundamental sequence.
Ordinal numbers start with natural numbers 0, 1, 2, 3, ... which are followed by ## \omega ## which represents the "simple" infinity. Then it goes further with ## \omega+1, \omega+2, \omega+3, ... \omega+\omega = \omega \cdot 2, \omega \cdot 2 + 1, ... \omega \cdot 3, ... \omega \cdot \omega = \omega^{\omega}, ..., \omega^{\omega^{\omega}}, ..., \epsilon_0, ... ##.
## \epsilon_0 ## is the least fixed point of the function ## \alpha \rightarrow \omega^{\alpha} ##. It is the limit of the sequence starting with 0 and repeating application of this function : ## 0, \omega^0, \omega^{\omega^0}, ... ##
The next fixed point, written ## \epsilon_1 ##, is the limit of the sequence starting with the next ordinal ## \epsilon_0+1 ## : ## \epsilon_0+1, \omega^{\epsilon_0+1}, \omega^{\omega^{\epsilon_0+1}}, ... ##
The following fixed points ## \epsilon_2, \epsilon_3, ... ## can be defined the same way.
We can say that the function ## \alpha \rightarrow \epsilon_\alpha ## enumerates the fixed points of the function ## \alpha \rightarrow \omega^\alpha ##.
Then ## \epsilon_\omega ## can be defined as the limit of ## \epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3, ... ##.
And we can go on with ## \epsilon_{\omega+1}, ..., \epsilon_{\epsilon_0}, ... \epsilon_{\epsilon_{\epsilon_0}}, ..., \zeta_0, ... ##.
## \zeta_0 ## is the least fixed point of the function ## \alpha \rightarrow \epsilon_\alpha ## .
In a similar way, the function ## \alpha \rightarrow \zeta_\alpha ## enumerates the fixed points of the function ## \alpha \rightarrow \epsilon_\alpha ##.
We can go on using successive greek letters, but it is simpler to number these functions, defining :
. ## \varphi_0(\alpha) = \omega^\alpha ##
. ## \varphi_1(\alpha) = \epsilon_\alpha ##
. ## \varphi_2(\alpha) = \zeta_\alpha ##
and so on.
The binary Veblen function ## \varphi_{\alpha}\beta ##, sometimes written ## \varphi(\alpha,\beta) ## or ## \varphi \ \alpha \ \beta ##, is defined by (see for example http://www.cs.man.ac.uk/~hsimmons/TEMP/OrdNotes.pdf):
. ## \varphi_0(\alpha) = \omega^{\alpha} ##
. ## \varphi_{\alpha+1} = ## enumeration of fixed points of ## \varphi_{\alpha} ##
. ## \varphi_{\lambda} = ## enumeration of common fixed points of ## \varphi_{\alpha} ## for all ## \alpha < \lambda ## (where ## \lambda ## is a limit ordinal)
See also https://sites.google.com/site/largenumbers/home/4-2/fgh_gamma0 and http://quibb.blogspot.fr/2012/03/infinity-larger-countable-ordinals.html for more information.
A sequence of ordinals ## \alpha_0, \alpha_1, \alpha_2, ... ## is said to be a fundamental sequence of the limit ordinal ## \lambda ## if ## \lambda ## is the limit of ## \alpha_0, \alpha_1, \alpha_2, ... ##.
The fundamental sequences of ## \phi_{\beta}\gamma ## are defined by (see for example https://en.wikipedia.org/wiki/Veblen_function):
. For any ## \beta ##, if ## \gamma ## is a limit with ## \gamma <\varphi _{{\beta }}(\gamma ) ## then let ## \varphi _{{\beta }}(\gamma )[n]=\varphi _{{\beta }}(\gamma [n]) ##.
. No such sequence can be provided for ## \varphi _0(0) = \omega^0 = 1 ## because it does not have cofinality ## \omega ##.
. For ## \varphi _0(\gamma +1)=\omega ^{{\gamma +1}}=\omega ^{\gamma }\cdot \omega \,, ## we choose ## \varphi _0(\gamma +1)[n]=\varphi _0(\gamma )\cdot n=\omega ^{{\gamma }}\cdot n\, ##.
. For ## \varphi _{{\beta +1}}(0) ##, we use ## \varphi _{\beta +1}(0)[0]=0 ## and ## \varphi _{{\beta +1}}(0)[n+1]=\varphi _{{\beta }}(\varphi _{{\beta +1}}(0)[n])\,, ## i.e. 0, ## \varphi _{{\beta }}(0) ##, ## \varphi _{{\beta }}(\varphi _{{\beta }}(0)) ##, etc.
. For ## \varphi _{{\beta +1}}(\gamma +1) ##, we use ## \varphi _{\beta +1}(\gamma +1)[0]=\varphi _{\beta +1}(\gamma )+1 ## and ## \varphi _{{\beta +1}}(\gamma +1)[n+1]=\varphi _{{\beta }}(\varphi _{{\beta +1}}(\gamma +1)[n])\,##.
Now suppose that ## \beta ## is a limit:
. If ## \beta <\varphi _{{\beta }}(0) ##, then let ## \varphi _{{\beta }}(0)[n]=\varphi_{{\beta [n]}}(0)\, ##.
. For ## \varphi _{{\beta }}(\gamma +1) ##, use ## \varphi _{{\beta }}(\gamma +1)[n]=\varphi _{{\beta [n]}}(\varphi _{{\beta }}(\gamma )+1)\,##.
It seems rather clear to me that these sequence are effectively fundamental sequences of ## \varphi_\beta(\gamma) ##, except for the last one. I don't understand why ## \varphi _{{\beta [n]}} ## is applied only once to ## \varphi _{{\beta }}(\gamma )+1 ##, it seems to me that it should be applied repeatedly to get a fixed point.
Could someone explain this to me, or indicate me where I could find a proof that these sequences are fundamental sequences of ## \varphi_\beta(\gamma) ## ?
Ordinal numbers start with natural numbers 0, 1, 2, 3, ... which are followed by ## \omega ## which represents the "simple" infinity. Then it goes further with ## \omega+1, \omega+2, \omega+3, ... \omega+\omega = \omega \cdot 2, \omega \cdot 2 + 1, ... \omega \cdot 3, ... \omega \cdot \omega = \omega^{\omega}, ..., \omega^{\omega^{\omega}}, ..., \epsilon_0, ... ##.
## \epsilon_0 ## is the least fixed point of the function ## \alpha \rightarrow \omega^{\alpha} ##. It is the limit of the sequence starting with 0 and repeating application of this function : ## 0, \omega^0, \omega^{\omega^0}, ... ##
The next fixed point, written ## \epsilon_1 ##, is the limit of the sequence starting with the next ordinal ## \epsilon_0+1 ## : ## \epsilon_0+1, \omega^{\epsilon_0+1}, \omega^{\omega^{\epsilon_0+1}}, ... ##
The following fixed points ## \epsilon_2, \epsilon_3, ... ## can be defined the same way.
We can say that the function ## \alpha \rightarrow \epsilon_\alpha ## enumerates the fixed points of the function ## \alpha \rightarrow \omega^\alpha ##.
Then ## \epsilon_\omega ## can be defined as the limit of ## \epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3, ... ##.
And we can go on with ## \epsilon_{\omega+1}, ..., \epsilon_{\epsilon_0}, ... \epsilon_{\epsilon_{\epsilon_0}}, ..., \zeta_0, ... ##.
## \zeta_0 ## is the least fixed point of the function ## \alpha \rightarrow \epsilon_\alpha ## .
In a similar way, the function ## \alpha \rightarrow \zeta_\alpha ## enumerates the fixed points of the function ## \alpha \rightarrow \epsilon_\alpha ##.
We can go on using successive greek letters, but it is simpler to number these functions, defining :
. ## \varphi_0(\alpha) = \omega^\alpha ##
. ## \varphi_1(\alpha) = \epsilon_\alpha ##
. ## \varphi_2(\alpha) = \zeta_\alpha ##
and so on.
The binary Veblen function ## \varphi_{\alpha}\beta ##, sometimes written ## \varphi(\alpha,\beta) ## or ## \varphi \ \alpha \ \beta ##, is defined by (see for example http://www.cs.man.ac.uk/~hsimmons/TEMP/OrdNotes.pdf):
. ## \varphi_0(\alpha) = \omega^{\alpha} ##
. ## \varphi_{\alpha+1} = ## enumeration of fixed points of ## \varphi_{\alpha} ##
. ## \varphi_{\lambda} = ## enumeration of common fixed points of ## \varphi_{\alpha} ## for all ## \alpha < \lambda ## (where ## \lambda ## is a limit ordinal)
See also https://sites.google.com/site/largenumbers/home/4-2/fgh_gamma0 and http://quibb.blogspot.fr/2012/03/infinity-larger-countable-ordinals.html for more information.
A sequence of ordinals ## \alpha_0, \alpha_1, \alpha_2, ... ## is said to be a fundamental sequence of the limit ordinal ## \lambda ## if ## \lambda ## is the limit of ## \alpha_0, \alpha_1, \alpha_2, ... ##.
The fundamental sequences of ## \phi_{\beta}\gamma ## are defined by (see for example https://en.wikipedia.org/wiki/Veblen_function):
. For any ## \beta ##, if ## \gamma ## is a limit with ## \gamma <\varphi _{{\beta }}(\gamma ) ## then let ## \varphi _{{\beta }}(\gamma )[n]=\varphi _{{\beta }}(\gamma [n]) ##.
. No such sequence can be provided for ## \varphi _0(0) = \omega^0 = 1 ## because it does not have cofinality ## \omega ##.
. For ## \varphi _0(\gamma +1)=\omega ^{{\gamma +1}}=\omega ^{\gamma }\cdot \omega \,, ## we choose ## \varphi _0(\gamma +1)[n]=\varphi _0(\gamma )\cdot n=\omega ^{{\gamma }}\cdot n\, ##.
. For ## \varphi _{{\beta +1}}(0) ##, we use ## \varphi _{\beta +1}(0)[0]=0 ## and ## \varphi _{{\beta +1}}(0)[n+1]=\varphi _{{\beta }}(\varphi _{{\beta +1}}(0)[n])\,, ## i.e. 0, ## \varphi _{{\beta }}(0) ##, ## \varphi _{{\beta }}(\varphi _{{\beta }}(0)) ##, etc.
. For ## \varphi _{{\beta +1}}(\gamma +1) ##, we use ## \varphi _{\beta +1}(\gamma +1)[0]=\varphi _{\beta +1}(\gamma )+1 ## and ## \varphi _{{\beta +1}}(\gamma +1)[n+1]=\varphi _{{\beta }}(\varphi _{{\beta +1}}(\gamma +1)[n])\,##.
Now suppose that ## \beta ## is a limit:
. If ## \beta <\varphi _{{\beta }}(0) ##, then let ## \varphi _{{\beta }}(0)[n]=\varphi_{{\beta [n]}}(0)\, ##.
. For ## \varphi _{{\beta }}(\gamma +1) ##, use ## \varphi _{{\beta }}(\gamma +1)[n]=\varphi _{{\beta [n]}}(\varphi _{{\beta }}(\gamma )+1)\,##.
It seems rather clear to me that these sequence are effectively fundamental sequences of ## \varphi_\beta(\gamma) ##, except for the last one. I don't understand why ## \varphi _{{\beta [n]}} ## is applied only once to ## \varphi _{{\beta }}(\gamma )+1 ##, it seems to me that it should be applied repeatedly to get a fixed point.
Could someone explain this to me, or indicate me where I could find a proof that these sequences are fundamental sequences of ## \varphi_\beta(\gamma) ## ?