- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $G$ be a non-abelian finite group with center $Z>1$.
I want to show that if $G/Z$ is a $p$-group, for some prime $p$, then $G$ contains a normal $p$-Sylow subgroup and $p\mid |Z|$.
We have that $$|G/Z|=p^n, n\geq 1\Rightarrow \frac{|G|}{|Z|}=p^n\Rightarrow |G|=p^n|Z|$$ That means that there are $p$-Sylow in $G$, right? (Wondering)
Now we have to show that there is only one $p$-Sylow, or not? (Wondering)
How could we do that? (Wondering)
Let $G$ be a non-abelian finite group with center $Z>1$.
I want to show that if $G/Z$ is a $p$-group, for some prime $p$, then $G$ contains a normal $p$-Sylow subgroup and $p\mid |Z|$.
We have that $$|G/Z|=p^n, n\geq 1\Rightarrow \frac{|G|}{|Z|}=p^n\Rightarrow |G|=p^n|Z|$$ That means that there are $p$-Sylow in $G$, right? (Wondering)
Now we have to show that there is only one $p$-Sylow, or not? (Wondering)
How could we do that? (Wondering)
Last edited by a moderator: