- #1
brotherbobby
- 702
- 163
- Homework Statement
- Consider the three dimensional cone formed by rotating the graph of ##f(x) = \frac{1}{x}## for ##x \ge 1## about the ##x## axis. The graph of ##f(x)## is shown below.
Calculate :
(a) The ##\mathbf{\text{volume}}## of the cone,
(b) The ##\mathbf{\text{surface area}}## of the cone. ##\\[10pt]##
- Relevant Equations
- 1. Let ##f## be continuous on ##[a,b]##, and let ##R## be the region bounded by the graph of ##f##, the ##x##-axis, and the vertical lines ##x = a## and ##x = b##. The ##\textbf{volume}## ##V## of the solid of revolution generated by revolving ##R## about the ##x##-axis is $$V = \pi \int_a^b [f(x)]^2 dx$$
2. If ##f## is smooth and ##f(x)\ge 0## on ##[a,b]## , then the ##\textbf{area S of the surface}## generated by revolving the graph of ##f## about the ##x##-axis is $$ S = 2\pi \int_a^b f(x) \sqrt{1+[f'(x)]^2} dx$$ ##\\[10pt]##
1. Volume : Using Relevant Equation 1 above, we have $$V = \pi \int_a^b [f(x)]^2 dx = \pi \int_1^{\infty} \frac{1}{x^2} dx = \pi \left[\frac{1}{x}\right]_{\infty}^1 \Rightarrow \; \boxed{\mathbf{V = \pi}}$$
2. Surface area : (This is where I am in trouble)
Using the Relavant Equation 2 above, we have $$S = 2\pi \int_a^b f(x) \sqrt{1+[f'(x)]^2} dx $$
Now since ##f(x) = \frac{1}{x}\Rightarrow f'(x) = - \frac{1}{x^2}##, the above simplifies to,
$$S = 2\pi \int_1^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^4}}dx = 2\pi \int_1^{\infty} \frac{\sqrt{x^4+1}}{x^3} dx$$
Let's change variables from ##x\rightarrow \theta : x^2 = \tan\theta\Rightarrow 2xdx = \sec^2\theta d\theta##. Rearranging variables and limits, we have $$S = \cancel{2}\pi\int_{\pi/4}^{\pi/2} \frac{\sec \theta}{x^3} \frac{\sec^2 \theta d\theta}{\cancel{2}x} = \pi \int_{\pi/4}^{\pi/2} \frac{\sec^3 \theta d\theta}{\tan^2 \theta} = \pi \int_{\pi/4}^{\pi/2} \frac{(1+\tan^2 \theta)\sec\theta}{\tan^2\theta}d\theta = \pi \left[ \int_{\pi/4}^{\pi/2}\frac{\sec\theta}{\tan^2 \theta} + \int_{\pi/4}^{\pi/2} \sec\theta \right]$$
Multiplying the top and bottom of the first term with ##\cos^2\theta##, we have $$S = \pi \int_{\pi/4}^{\pi/2} \frac{\cos\theta}{\sin^2\theta}d\theta + \pi \int_{\pi/4}^{\pi/2} \sec\theta d\theta$$
Let's call the first integral as $$I = \pi \int_{\pi/4}^{\pi/2} \frac{\cos\theta}{\sin^2\theta}d\theta$$ Effecting a change of variables from ##\theta \rightarrow z : z = \sin\theta \Rightarrow dz = \cos\theta d\theta##, we have $$I = \pi \int_{1/\sqrt{2}}^{1} \frac{dz}{z^2} = \pi \left[ \frac{1}{z}\right]_{1}^{1/\sqrt{2}} = \pi(\sqrt 2-1)$$
The second integral is : $$\pi \int_{\pi/4}^{\pi/2} \sec\theta d\theta = \ln{|\sec\theta+\tan\theta|} _{\pi/4}^{\pi/2}$$
which is divergent for the upper limit of ##\pi/2##
These are the allowed answers on the website - none of which match mine.A help or hint would be welcome.