- #1
- 4,807
- 32
Right or wrong? Specifically, an equation is said to be Galilean invariant if a substitution
[tex]x \rightarrow x \pm v_x t[/tex]
[tex]y \rightarrow y \pm v_y t[/tex]
[tex]z \rightarrow z \pm v_z t[/tex]
[tex]t \rightarrow t[/tex]
doesn't change the equation.
If right, would simply showing that
[tex]x \rightarrow x \pm vt[/tex]
[tex]y \rightarrow y [/tex]
[tex]z \rightarrow z [/tex]
[tex]t \rightarrow t[/tex]
do the trick too?
[tex]x \rightarrow x \pm v_x t[/tex]
[tex]y \rightarrow y \pm v_y t[/tex]
[tex]z \rightarrow z \pm v_z t[/tex]
[tex]t \rightarrow t[/tex]
doesn't change the equation.
If right, would simply showing that
[tex]x \rightarrow x \pm vt[/tex]
[tex]y \rightarrow y [/tex]
[tex]z \rightarrow z [/tex]
[tex]t \rightarrow t[/tex]
do the trick too?