- #1
James1238765
- 120
- 8
- TL;DR Summary
- What do the gamma matrices aside from ##\gamma_3 (I)## and ##\gamma_8 (Y)## represent in SU(3)?
As there was quite rightly some criticism earlier about not following proper theory, I will first demonstrate what I have understood of the gamma matrices of SU(3).
There are 8 gamma matrices that together generate the SU(3) group used in QCD. Gell-Mann used only 2, ##\gamma_3## and ##\gamma_8##, to great effect, by defining:
$$ I = \frac{1}{2} \gamma_3 =
\begin{bmatrix}
\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{bmatrix} $$
and
$$ Y = \frac{1}{2\sqrt3} \gamma_8 =
\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & -\frac{2}{3}
\end{bmatrix}
$$
These two definitions of Y and I completely determine all the following classifications for mesons and baryons:
For instance, by first defining ##uud## as:
$$ uud =
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} +
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} +
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}$$
we obtain
$$
I(uud) =
\begin{bmatrix}
\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
1 \\
-\frac{1}{2} \\
0
\end{bmatrix} =
1 - \frac{1}{2} + 0 = \frac{1}{2}$$
and
$$
Y(uud) =
\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & -\frac{2}{3}
\end{bmatrix}
\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
\frac{2}{3} \\
\frac{1}{3} \\
0
\end{bmatrix} =
\frac{2}{3}+\frac{1}{3}+0 = 1$$
Thus, the coordinate of ##uud## is ##[\frac{1}{2}, 1]##. All other elements are checked to be mapped correctly into the graph above.
From these 2 fundamental ##I## and ##Y## definitions, dependent quantities like charge and mass can be constructed as follows:
$$ Q = I + \frac{Y}{2}$$
$$ M = a_0 + a_1 Y + a_2 (I(I+1) - \frac{Y^2}{4})$$
for some constant ##a_0, a_1## and ## a_2##.
This allowed for the prediction of a new particle ##sss##, which were later discovered having the correctly predicted mass. This ##I - Y## categorization of the particles was awarded the Nobel Prize in 1969.
This is where many presentations end on Gell-Mann's categorization. My question is, given that there are 6 more thus far unused basis of SU(3), ##\gamma_1, \gamma_2, \gamma_4, \gamma_5, \gamma_6, \gamma_7##, what do each of these gamma matrices represent, and what further categorizations can be achieved by employing these other matrices aside from ##\gamma_3## and ##\gamma_8##?
There are 8 gamma matrices that together generate the SU(3) group used in QCD. Gell-Mann used only 2, ##\gamma_3## and ##\gamma_8##, to great effect, by defining:
$$ I = \frac{1}{2} \gamma_3 =
\begin{bmatrix}
\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{bmatrix} $$
and
$$ Y = \frac{1}{2\sqrt3} \gamma_8 =
\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & -\frac{2}{3}
\end{bmatrix}
$$
These two definitions of Y and I completely determine all the following classifications for mesons and baryons:
For instance, by first defining ##uud## as:
$$ uud =
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} +
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} +
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}$$
we obtain
$$
I(uud) =
\begin{bmatrix}
\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
1 \\
-\frac{1}{2} \\
0
\end{bmatrix} =
1 - \frac{1}{2} + 0 = \frac{1}{2}$$
and
$$
Y(uud) =
\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & -\frac{2}{3}
\end{bmatrix}
\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
\frac{2}{3} \\
\frac{1}{3} \\
0
\end{bmatrix} =
\frac{2}{3}+\frac{1}{3}+0 = 1$$
Thus, the coordinate of ##uud## is ##[\frac{1}{2}, 1]##. All other elements are checked to be mapped correctly into the graph above.
From these 2 fundamental ##I## and ##Y## definitions, dependent quantities like charge and mass can be constructed as follows:
$$ Q = I + \frac{Y}{2}$$
$$ M = a_0 + a_1 Y + a_2 (I(I+1) - \frac{Y^2}{4})$$
for some constant ##a_0, a_1## and ## a_2##.
This allowed for the prediction of a new particle ##sss##, which were later discovered having the correctly predicted mass. This ##I - Y## categorization of the particles was awarded the Nobel Prize in 1969.
This is where many presentations end on Gell-Mann's categorization. My question is, given that there are 6 more thus far unused basis of SU(3), ##\gamma_1, \gamma_2, \gamma_4, \gamma_5, \gamma_6, \gamma_7##, what do each of these gamma matrices represent, and what further categorizations can be achieved by employing these other matrices aside from ##\gamma_3## and ##\gamma_8##?
Last edited: