- #1
Trevorman
- 22
- 2
Homework Statement
Derive from the formulas
##\frac{D^\pm}{Dt}(u \pm F) = 0##
where
##\frac{D^\pm}{Dt} = \frac{\partial}{dt} + ( u \pm c) \frac{\partial}{\partial x}##
the one-dimensional wave equation in the acoustical limit.
\begin{cases}
u << c\\
c \approx c0 = const\\
F = \frac{2c}{\gamma-1}
\end{cases}
Homework Equations
The answer should be
## \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = \frac{\partial^2 p}{\partial x^2}##
where
##c_0 = \sqrt{\frac{\gamma p_0}{\rho_0}}##
The Attempt at a Solution
Expanding
##\frac{D}{Dt} = \frac{\partial}{\partial t}+\frac{\partial u}{\partial x} \pm \frac{\partial c}{\partial x}##
Now combining equations
##\left( \frac{\partial}{\partial t}+\frac{\partial u}{\partial x} \pm\frac{\partial c}{\partial x} \right) \cdot (u \pm F) = 0 \Rightarrow##
##\Rightarrow\dot{u} \pm\dot{F} + uu^\prime + Fu^\prime + uc^\prime +Fc^\prime = 0 ##
Since ##c = c_0 = const## and ##u<<c \Rightarrow uc^\prime \approx 0 ##, the quadratic terms are neglected. ##\dot{F} = 0## ,and substituting F
##\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{2c}{\gamma-1} \frac{\partial c }{\partial x} = 0##
This should be done by substituting
##c=c_0 + c^\prime##
##u=u^\prime##
##p = p_0 + p^\prime##
##\rho = \rho_0 + \rho^\prime##
and by neglecting small terms as ##u^\prime c^\prime##
I do not know how to proceed with this example.
Thank you!