- #1
Heidi
- 418
- 40
Hi Pfs
i am interested in spin networks (a pecular lattices) and i found two ways to define them. they both take G = SU(2) as the Lie group.
in the both ways the L oriented edges are colored with G representations (elements of G^L
the difference is about the N nodes.
1) in the first way the coloring of the nodes is like the links: elements of G^N
2) in the second the nodes are colored with intertwiners between the ingoing links and the outgoing links from the node
How to see that they are equivalent
i would appreciate an example with one or two nodes
I have doubts because when the nodes are trivalent there is only one intertwiner and in that case is the coloring of the nodes still a choince,
thanks
i am interested in spin networks (a pecular lattices) and i found two ways to define them. they both take G = SU(2) as the Lie group.
in the both ways the L oriented edges are colored with G representations (elements of G^L
the difference is about the N nodes.
1) in the first way the coloring of the nodes is like the links: elements of G^N
2) in the second the nodes are colored with intertwiners between the ingoing links and the outgoing links from the node
How to see that they are equivalent
i would appreciate an example with one or two nodes
I have doubts because when the nodes are trivalent there is only one intertwiner and in that case is the coloring of the nodes still a choince,
thanks
Last edited: