A Gauge theory on a lattice: intertwiners, gauge potentials...

Heidi
Messages
420
Reaction score
40
Hi Pfs
i am interested in spin networks (a pecular lattices) and i found two ways to define them. they both take G = SU(2) as the Lie group.
in the both ways the L oriented edges are colored with G representations (elements of G^L
the difference is about the N nodes.
1) in the first way the coloring of the nodes is like the links: elements of G^N
2) in the second the nodes are colored with intertwiners between the ingoing links and the outgoing links from the node
How to see that they are equivalent
i would appreciate an example with one or two nodes
I have doubts because when the nodes are trivalent there is only one intertwiner and in that case is the coloring of the nodes still a choince,
thanks
 
Last edited:
Physics news on Phys.org
The two ways of defining spin networks are equivalent because they use the same Lie group (G = SU(2)) and the same representations for the edges (elements of G^L). In the first way, the nodes are colored with elements of G^N, while in the second way the nodes are colored with intertwiners between the incoming and outgoing links from the node.To illustrate the equivalence, let's consider a simple example with one node. In the first approach, the node is colored with an element of G^N, say, g. In the second approach, the node is colored with the intertwiner between the incoming and outgoing links, which is also g. Thus, the two approaches yield the same coloring for the node and are therefore equivalent.When the nodes are trivalent, there is only one intertwiner, so the choice of a specific element of G^N is not necessary. However, in this case the two approaches are still equivalent since the intertwiner is the same as the element of G^N.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...

Similar threads

Back
Top