Gauss' law for a cavity in an insulator

AI Thread Summary
The discussion revolves around applying Gauss' law to a cavity within a uniformly charged solid sphere. It highlights that while superimposing positive and negative charge densities suggests no charge is enclosed in the cavity, this does not imply the absence of an electric field. The argument emphasizes that a lack of net flux does not equate to no electric field, as field lines can still exist. Additionally, the importance of symmetry in analyzing electric fields is noted, alongside a suggestion to include relevant figures in future posts for clarity. Understanding these nuances is crucial for correctly interpreting the behavior of electric fields in such configurations.
laser
Messages
104
Reaction score
17
Homework Statement
A solid sphere of radius R has uniform charge density ρ. A hole of radius R/2 is scooped out of it as shown in Figure 10. Show that the field inside the hole is uniform and along the x-axis and of magnitude ρR/6ε0. Hint: Think of the hole as a superposition of positive and negative charges.
Relevant Equations
E=kq/r^2
This is a problem from Yale OCW (Shankar). The solution he gives is as follows:

Screenshot_3.png


Sure, this makes sense. However...

Superimposed rho and negative rho with radius R/2 means there is no charge enclosed in the cavity... therefore
no charge -> no flux -> no electric field.
 
Physics news on Phys.org
laser said:
Homework Statement: A solid sphere of radius R has uniform charge density ρ. A hole of radius R/2 is scooped out of it as shown in Figure 10. Show that the field inside the hole is uniform and along the x-axis and of magnitude ρR/6ε0. Hint: Think of the hole as a superposition of positive and negative charges.
Relevant Equations: E=kq/r^2

This is a problem from Yale OCW (Shankar). The solution he gives is as follows:

View attachment 340207

Sure, this makes sense. However...

Superimposed rho and negative rho with radius R/2 means there is no charge enclosed in the cavity... therefore
no charge -> no flux -> no electric field.
No. You cannot draw the conclusion that there is no electric field. You would need to be able to make some symmetry argument for that to hold.

No net flux only means any field lines that come in also go out somewhere else.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top