- #1
Adoniram
- 94
- 6
Homework Statement
I'm encountering these integrals a lot lately, and I can solve them because I know the "trick" but I'd like to know actually how the cartesian to polar conversion works:
##\int_{-\infty}^{\infty}e^{-x^2}dx##
Homework Equations
##\int_{-\infty}^{\infty} e^{-x^2} = I##
##I^2=\int_{-\infty}^{\infty} e^{-x^2}dx \int_{-\infty}^{\infty} e^{-y^2}dy##
##=\int_{-\infty}^{\infty} e^{-r^2}r dr dθ = π##
The Attempt at a Solution
So, if I look at ##r=\sqrt{x^2+y^2}##, it's easy to see that ##dr=(1/r)(x dx+y dy)##
Which leads me to believe that ##dθ=(x dx+y dy)## ... ?
If ##θ=ArcTan(y/x)##, then how does ##dθ=(x dx+y dy)##?
Say ##y=Tan(θ)x##, then taking ##dy## and simplifying, I can get:
##x dy - y dx=(x^2+y^2) dθ##
So unless ##x/(x^2+y^2) = y## and ##y/(x^2+y^2) = -x##, I am at a loss... :(